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This accompanies the teaching of NACS/MPHY 615 Biological Signal Analy-
sis (3). The course was meant to cover the origin and analysis of various biological
signals, especially those arising from the nervous system. Emphasis is on the mea-
surement and interpretation of these signals by techniques such as spectrum analy-
sis, average evoked responses, single-unit histograms, and pattern recognition.
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Chapter 1

Basic Signal Processing

Some Properties of Biological Signals

1.1 Introduction: Signal, noise and data

One scientist’s noise is often another scientist’s signal.

Is all data generated by the brain signal?

Speaking in a somewhat general way, we say that all biological data can be
considered to be signals. Obviously, however, some data are more signallike than
others. The dividing line between data that can be profitably considered to be
signallike and data that cannot depends upon both the origin of the data and how
we propose to process it and analyze it conceptually. A discussion of the many
facets of this idea in the light of modern computer data processing methods is
one of the major purposes of this book. marking in this direction requires that
we first establish some of the major concepts and properties of signals insofar as
they relate to biological processes. The properties of these signals influence, guide,
and sometimes determine the ways in which computer programs are developed to
perform signal analysis.

Signal: A variation in the amplitude and polarity of an observed physical quan-
tity produced by a process whose mechanisms we desire to understand by experi-
mental investigation. The requirement that the variation be produced by a mecha-
nism we are interested in is of basic importance and brings us to consider at once,
noise, the inseparable companion of signal.

Noise: A variation in the size of an observed physical quantity we are inves-
tigating produced by a process or an aspect of a process that we have no present
interest in.

Data: Some combination, often additive, of signal and noise. The additive
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16 CHAPTER 1. BASIC SIGNAL PROCESSING

situations are easiest to deal with in terms of analysis and interpretation of results.
In much of what follows we will assume it applies. In general, however, additivity
should not be taken for granted.

The errant course of scientific progress is such that often what is considered to
be a signal in one investigation turns out to be noise in another. Or more colloqui-
ally, one man’s signal is another man’s noise.

The variations in the size of a physical quantity are often time-dependent.
When they are, the data is said to be a function of time and written x(t). Tem-
poral data variation is most convenient for us to consider and also most appropriate
since a realtime computer generally accepts data in time sequential form. How-
ever, we may also profitably consider data which are functions of such variables as
distances or angle, for it is usually a simple matter to convert them into functions
of time by a signal transducer. As an example, a scanning densitometer converts
the spatially varying density of a translucent object into a function of time as the
densitometer is moved over the scanned object. An oscilloscope screen is an ex-
ample of the process in reverse for there the time-varying data is converted into a
function of distance along the horizontal axis of the oscilloscope screen. Hereafter,
when we mention data signals and noise, we will consider them to be temporally
varying.

We are interested in establishing the basic principles of a wide assortment of
procedures by which we analyze the signal-like data of neurobiological investiga-
tions. Temporally generated signals and noises exhibit a wide variety of waveform
features or parameters, and it is essential to classify them according to such fea-
tures, for the validity of much of the subsequent data processing depends upon the
presence or magnitude of these features. The following pages contain a discussion
of some of the properties of signals to serve as the basis of understanding the signal
analysis procedures and techniques to be described in later chapters.

1.2 Continuous Signals and Their Discrete Counterparts

Let us begin with data which consist only of signals. A signal is said to be con-
tinuous if it is defined at all instants of time during which it occurs. A continuous
signal may, however, possess discontinuities or sudden changes in amplitude at
certain instants of time. At these instants the slope of the signal is infinite. At
other times the signal amplitude changes gradually so that by choosing an interval
short enough, the corresponding change in amplitude can be made as small as we
like. While continuous signals without discontinuities are the rule in such biolog-
ical phenomena as the EEG, deliberately generated discontinuous signals may be
generated by the instrumentation associated with neurobiological investigations.
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17 1.2. CONTINUOUS SIGNALS AND THEIR DISCRETE COUNTERPARTS

As an example, the signal produced by a rat when it pushes a switch to obtain food
is discontinuous. This type of signal is referred to as a step function. Illustrations
of continuous and discontinuous signals are shown in Fig.1.1. It is also to be noted
that whether continuous or not, the signals are always single valued: they have only
one value at any particular instant in time. A particularly interesting and important
discontinuous signal is the unit step signal of Fig.1.1(c).

u(t) =0 whent < tg4, (1.1
1 whent > 4. (1.2)

tq4 is the instant of discontinuity. The equation indicates that the signal jumps to 1
as soon as t becomes greater than ¢;. The unit step is used, among other purposes,
to describe a stimulus that has a sudden onset.

Besides speaking of a continuous signal, x(t) , we will also have occasion to
speak of its time derivatives, the first derivative being written dx(t)/dt or, alter-
natively, 2/(¢). The first derivative is, of course, the time rate of change of the
variable. When it is zero, the variable itself is at a local maximum or minimum
value or, less frequently, at an inflection point. (The derivative of a constant signal
is always zero.) This property is often used in determining when a spike-like wave-
form reaches a maximum or minimum. A peak detection device which essentially
takes the time derivative of the waveform is commonly employed for this. When its
output, the waveform time derivative, goes through zero in a negative direction, a
positive maximum has occurred; when it goes through zero in a positive direction,
a negative maximum has occurred. Figure XX1.2(a) illustrates the situation for the
former case. The first derivative is also important in indicating when the signal
is changing most rapidly because it has its greatest value at that time. A positive
maximum in the first derivative indicates the time when the signal is increasing
most rapidly; a negative maximum, when it is decreasing most rapidly. Just as a
continuous signal may exhibit discontinuities, so may its derivatives. A disconti-
nuity in the first derivative occurs when there is a cusp in the original signal. An
example is the sawtooth signal of Fig. XX1.2 (b) . When it is at its maximum and
minimum values, discontinuities occur in its first derivative, a square wave.

The derivative operation is not without practical difficulties since noise contri-
butions tend to corrupt the derivative measurement. In computer analysis of data,
the derivative operation is approximated by comparing successive sampled values
of the signal with one another to see when maximum and minimum rates of change
occur. Although this is an approximation, the results are often more than adequate.
It is worth noting here that approximation is different from estimation, the latter
being a statistical procedure whose meaning will be made clear in the subsequent
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18 CHAPTER 1. BASIC SIGNAL PROCESSING

Figure 1.1: (a) A continuous signal; (b) a discontinuous signal; (c) the unit step
wu(t) , showing step onset at t = ¢4

pages. In contrast to temporally continuous (T-continuous) signals are the tempo-
rally discrete (T-discrete) signals. These are signals which exist only at discrete
instants in time. For our purposes the most important discrete signals are those
which occur when a continuous signal has its amplitude measured or sampled at
discrete instants of time that are usually equally spaced. A T'-discrete signal is thus
a sequence of measurements x1, x2, ..., xr lasting for the duration of the time
the signal is observed. In digital data processing it is furthermore usually quan-
tized in amplitude by an analog-to-digital converter. This gives it the property of
being amplitude discrete (A-discrete). The result is a signal, T- and A-discrete,
which provides the basic data thereafter for all subsequent computer analyses of
the original signal.

Having introduced the continuous signal and its sampled T-discrete representa-
tion, it is useful to establish here a form of notation which permits us to distinguish
between them with a minimum amount of confusion. We will use the symbol ° to
distinguish a sampled T-discrete signal from its continuous source signal. We will
drop the © when no confusion seems possible. Similarly, we will use ¢ to represent
continuous time and ¢°A to represent those instants that a signal is sampled at a
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19 1.2. CONTINUOUS SIGNALS AND THEIR DISCRETE COUNTERPARTS

ey T

Figure 1.2: (a) Above, a continuous signal; below, its time derivative. The nega-
tive and positive going zero crossings of the derivative correspond to positive and
negative peaks in the signal. (b) Above, a periodic sawtooth signal; below, its time
derivative which is a periodic discontinuous square wave.

uniform rate. A is the interval between neighboring samples, and ¢° is an integer-
valued index: 1,2, 3, ..., etc. Signal analyses are often most easy to describe when
A = 1. This results in no loss of generality. When there is no possibility of con-
fusion, the A will be dropped. The signals or data handled by a digital computer
are discrete not only in time but also in amplitude. This arises from the fact that
the amplitude of a signal at a particular sampling instant is represented as a num-
ber within the computer, a number containing a limited number of digits or bits
depending upon the computer’s structure. To arrive at this numeric representation
a continuous signal is first transformed into its A-discrete amplitude version by
quantization in an analog-to-digital (A-D) converter. At each sampling time the
quantization procedure assigns to the signal amplitude one of a finite number of
levels. This level has a numeric value which represents the sample in subsequent
data analysis computations. The subject of A-D conversion, or quantization, is
discussed more thoroughly in Chapter 2.

Perhaps the simplest way of reconstructing a continuous signal from a set of its
samples is shown in Fig. 1.3. Here the signal is assumed to remain constant at its
sampled value for the time interval between the present and the next sample time.
It is important to recognize that the sampling and interpolation process I can pro-
duce severe alterations of the signal depending upon the interrelationships between
signal and sampling parameters. Two of the simplest errors are seen in Eig. 1.3
where in (a) a discontinuity is lost and in (b) a rapidly fluctuating component is sup-
pressed because the sampling rate is too low. This type of error occurs regardless
of how the interpolation between sampling instants is performed. A more thorough
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20 CHAPTER 1. BASIC SIGNAL PROCESSING
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Figure 1.3: (a) Above, a signal with a discontinuity between t = 4 and 5; below,
a reconstruction of that signal by interpolation with a constant value between sam-
pling instants. (b) Above, another continuous signal fluctuating rapidly between
the 4th and 5th sampling instants. Note how the same type of sampling reconstruc-
tion totally lacks evidence of the rapid fluctuation of the original.
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21 1.3. REPETITIVE AND PERIODIC SIGNALS

discussion of sampling problems is also presented in Chapter 3. In some cases a
signal is intrinsically T-discrete as for example is the count of the number of events
occurring within an interval of time, such as the number of times an EEG wave-
form has a zero-crossing (a transition through zero amplitude) in one second. A
second example is a list of measurements characterizing the structure of an object.
It is important to note, however, that in the latter example the order in which the
measurements are placed into a sequence may be of little or no importance. In tem-
poral measurements or in measurements that are functions of a scanning process,
the measurements follow one another in an order which must not be tampered with.
The T-discrete or sampled version of a continuous signal is often used to construct
estimates of parameters of the original continuous waveform, while an inherently
discrete signal can, of course, never be meaningfully analyzed in this way. Thus
far we have spoken of a signal as a one-dimensional quantity or variable. This is
unduly restricting to many biological variables that can rightfully be called signals.
For example, the amplitude of the EEG as measured at three different locations
on the scalp is described by three coordinates. The net signal describing the ob-
served EEG is therefore three-dimensional. If there were six recording locations,
the observed EEG would be a six-dimensional signal. Each of the components of
a multidimensional signal is distinguishable from a unidimensional signal and can
be processed as such. There is an unavoidable burden placed upon a data proces-
sor employed to handle rapidly fluctuating multidimensional signals and keep up
with these fluctuations, a burden .that increases with the dimensionality of the sig-
nal. Basically, the data processor must be able to sample each signal coordinate
sequentially at a rate which preserves the information content in the signal as it is
being processed. We will have more to say about this in Chapter 2.

1.3 Repetitive and Periodic Signals

Of considerable importance to biological signal analysis are repetition and period-
icity. A signal is said to be repetitive if it has a particular waveform which recurs
for as long as the signal persists. If, furthermore, this repetition occurs at uniformly
spaced intervals in time, the signal is said to be periodic. Exact periodicity does
not exist in biological signals unless external periodic stimulation is supplied to
the preparation as is frequently done in the study of evoked responses from the
nervous system. The periodicity of the stimulus is then looked for in the biolog-
ical response. The EKG is an example of a biological signal which comes close
to being periodic. Periodicity is important not only because it lends itself to rel-
atively easily analyzable data, but also because it leads to the spectral concept of
a signal. In this concept, to be discussed later in this chapter and throughout the
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22 CHAPTER 1. BASIC SIGNAL PROCESSING

book, the signal is represented as the sum of sine waves of different frequencies
and amplitudes. The periodic signal of duration T is of greatest interest to us here.
It is represented by the equation

z(t) =zt +mT),m=0,£l,+2,... (1.3)

with T being the period of the signal. The sawtooth wave of fig. 1.2 is an example
of such a signal. Note that the signal persists from the infinite past to the infinite
future.

1.4 Sampled Representation of a Signal

Let us assume that we sample a signal x(¢) without error once every A seconds
throughout all time. We represent the signal by the discrete sequence of its sam-
pled values, ignoring the behavior of the signal between sample times. The im-
portant question that arises is, how useful a representation of the signal is this set
of ordered samples? We shall show here that the goodness of the discrete repre-
sentation depends upon what is called the spectrum of the signal and its relation to
the sampling rate. If sampling is done at the proper rate, it happens that this rep-
resentation contains all the structure of the original signal. first, let us re-examine
the signal reconstruction illustrated in fig. 1.3(b), where the signal amplitude is
assumed to stay constant during the interval between successive samples. Such
a reconstruction is useful when data are being inspected as they are received al-
though, obviously, it almost always distorts the signal. The signal reconstruction
that we shall discuss now is one that cannot be performed until all the signal data
has been obtained. It therefore is not of practical value in the same sense that the
previous method is; but it does demonstrate the degree to which the sampled data
represent the original process.
The sequence of data samples obtained by the sampling process is:

o o(=A),z(0),x(A), z(24), . ... We now multiply each sample value x(t°A)

by the so-called ’sinc’ function,

t—t°A  sin[r(t —t°A)/A]
A )= 7(t —t°A)/A

sine( (1.4)

This function is shown in Fig.1.4. It has the value of unity at £ = t°A and zero
whenever ¢ is any other integer multiple of A, ¢° being, as before, an integer. (It
has the further important property that its Fourier transform, to be discussed later,
has amplitude A when f is between —1/2A and 1/2A and is zero for all other
values of f.) The sinc function whose amplitude is z(t°A) at t = t°A, and is zero
at all other integer multiples of A, u°A.
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23 1.4. SAMPLED REPRESENTATION OF A SIGNAL

t°-NA  (t°+1A

Figure 1.4: Fig. 1.4. The sinc function. The function is unity at t = tA and O at
all other integer multiples of A.

That is,

—1°A °A),  t=t°A
t—t {x( ), 05

0, t=u’A

Because of this, when all the sinc functions representing the signal at integer
multiples of A are added together, we obtain the sum

rt)= 3 a(tA)sine( = AtOA) (1.6)

t°=—00

The value of x4(t) at each sample time t°A is just the amplitude of the original
sample obtained at that time, i.e., there is no interaction of samples at the sampling
points. There is interaction, however, at all times between the sample points. In a
sense, the sinc function provides a method of interpolating a smooth curve between
the sample points z(t°A). Now, it is possible to prove that if z(t) , the original
function, has what is called its spectral bandwidth, F', smaller than 1/2A, the sum
of the individual weighted sinc functions of Eq.XX1.5 will yield exactly z(¢) at
all points in time, not just at the sample points. On the other hand, if the spectral
bandwidth of z(¢) exceeds 1/2A, the reconstruction will not be perfect, the amount
of error between x(t) and x4(t) being related to the amount by which the bandwidth
F exceeds 1/2A. When the sampling rate [/A is related to the bandwidth by
F = 1/2A, the rate is said to be the Nyquist sampling rate, a rate that is twice the
signal bandwidth.
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24 CHAPTER 1. BASIC SIGNAL PROCESSING

1.5 Fourier Series Representation of a Signal

Having pointed out the adequacy of sample values as a representation of a signal
in terms of the relationship between sample rate and bandwidth, we must now put
meaning into the term bandwidth. This can be done in the following way. Let us
consider that we only know the behavior of z(t) over a T' second interval of time
starting at ¢ = (. This is typical of what occurs in real situations. Since we have
no knowledge of what x(¢) has done earlier than 0 or later than 7', we assume
that it repeats itself periodically with period 7" indefinitely. This is an artifice, but
a valid one as long as our interest in confined only to what z(¢) does between 0
and T'. z(t) can be represented by the sum of a set of sine and cosine waves of
different amplitudes and harmonically related frequencies infinite in number. This
is its Fourier series representation which is given by

[e.9]

2mnt 2mnt
[Ar(n) cos ik ik
=1

+ Br(n)sin T] (1.7)

o(t) = %AT(O) +

n

The lowest or fundamental frequency of the series is 1/7. The amplitudes
Ap(n) and Bp(n) of the components of this series are obtained from z(¢) by the
equations

2 [T 2
Ap(n) = T/o x(t) cos 7¥Lt dt
and -
2 2mnt

The frequency of the nth component is /7" Hz. The nth frequency component
of x(t) is defined by the two coefficients Ap(n) and Bp(n). If the amplitudes
Ar(n) and Bp(n) are O whenever f > F, z(t) is said to be bandlimited to the
frequencies extending from O to ' Hz.

From Eq.XX (1.7) it can be seen that the waveform of the observed segment
of the signal determines the values of the Fourier coefficients uniquely. To obtain
these coefficients, the amplitude of z(¢) must be processed at all values of time
within the observation interval. When this is done the complete Fburier series so
obtained will reconstruct the original waveform, if it is continuous, without error.
Continuity generally prevails in biological signals although there are signals, such
as those representing neuronal spike sequences, where continuity does not apply.
These will be discussed later. Here we ignore continuous signals with discontinu-
ities in them. For any signal, we can construct a curve relating the amplitudes of
its Ap(n) and By (n) to the frequency f,, = n/T. Moreover, since Ar(n) and
Br(n) both pertain to the same frequency, we shall see that a more economical

DAD. Please do not duplicate or distribute without asking.



25 1.5. FOURIER SERIES REPRESENTATION OF A SIGNAL

Figure 1.5: Fig. 1.5 (Up to a scale...) The spectrum | X7 (n)|? of the sawtooth
wave from Fig. 1.2 (b) when the peak-peak amplitude is 2. The special coefficients

are O for all odd values of n.

and significant plot is that of | X7 (n)| = \/ AZ(n) + B2(n) against frequency. An
example of such a plot is shown in Fig. 1.5 for the sawtooth wave of Fig. 1.2(b).
The period T of the wave is taken to be 1 sec. The value of the spectral coefficient
| X7(n)| = 8/(m*n?) for n even, and is 0 when n is odd or zero. Vertical lines are
drawn with a height equal to the magnitude of X1 (n). The existence of terms out
to indefinitely large values of n is caused principally by the sudden changes (dis-
continuities) in the slope of the sawtooth at its peaks. |X7(n)| is referred to as the
amplitude spectrum of z(¢) , and | X7 (n)|? as the power spectrum, often shortened
to spectrum. They are usually plotted as a function of frequency, n/7" or n. The
term power is employed because it is the square of an amplitude related to force
(often voltage) and this is proportional to power. Because | X7(n)|? is defined only
for discrete frequencies corresponding to integer values of n, it is also called a line
spectrum. More will be said of the power spectrum later.

Although we have thus far restricted the lower frequency limit of the spectrum
to 0 Hz, it is useful to talk about the negative frequencies of a spectrum. Doing
so introduces some simplifications into our dealings with signal spectra. Negative
frequencies can be introduced by an alternative way of writing a Fourier series for
x(t), one that employs complex notation:

2mwint
T

x(t) = Z Xr(n)exp (1.9)

n=—oo
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where the x7(n) are complex numbers given by

1

T .
—2mjint
Xr(n) = T/o x(t) exp J

d/,t (1.10)

That this series is equivalent to the original expression is seen by considering
the sum of the pair of terms corresponding to the integers —n and n:

Xr(—n)exp(—2mjnt/T) + Xp(n) exp(2mjnt/T) (L.11)

By employing the Euler formula, exp(j6) = cos(0) + j sin(f), we obtain for this
pair of terms,

[X7(n) + Xr(—n)] cos(2mnt/T) + j[Xr(n) — Xp(—n)|sin(2ant/T) (1.12)

This has the same form as the right-hand side of Eq. (1.6). If z(¢) is real, as it is for
the kinds of signals we consider, Eq. (1.11) must be real regardless of the integer
value of n. Then, by algebraic manipulation of the real and imaginary quantities
we find that

Xr(n) =[Ar(n) — jBr(n)]/2 = X7(—n),n=1,2,...

and
X7(0) = A7 (0)/2 (1.13)

The asterisk denotes the conjugate complex value. Thus the complex series is a
simple rearrangement of the real Fourier series. It has the advantage of introducing
negative frequencies, those frequencies in the expansion corresponding to negative
values of n. Although it is not necessary to employ negative frequencies in dealing
with spectral properties of signals, a certain amount of simplicity and overall clarity
results when this is done. This becomes even more apparent when extended to the
more general Fourier integral treatment of signals. The complex series has also
justified more fully our use of X7 (n) to indicate the magnitude of the spectral
component corresponding to frequency n/7T. We call the frequencies associated
with the Fourier series of Eq. (1.6) real frequencies. They are always positive.
We call the frequencies associated with the complex Fourier series of Eq. (1.8)
complex frequencies. The average power of a unit amplitude cosine wave of real
frequency n/T is 1/2, since Ar(n) = 1, Br(n) = 0. This is equally divided
between the component at complex frequencies —n /7T and n/T'. Generally, from
Eq. (1.12)

| X7(n)|> = A%(n) + B#(n) = |X7(—n)|? (1.14)
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The amplitude spectrum of a real x(t) is the plot of | X'7(n)| as a function frequency
n/T and it is symmetric about the origin. Each frequency component of the signal
contributes a power equal to the square of its magnitude, | X7(n)| . The sum of all
these powers is the total power in the signal. There is also informatiox about signal
structure in the phase of X7 (n). This is given by

0x(n) = arctan[—Br(n)/Ar(n)] (1.15)

6(n), when plotted as a function of n or frequency n/T, yields the phase spectrum
of the signal.

1.6 Bandwidth Limited Signals

Consider now the special case where the signal is bandwidth (or band) limited to
frequencies between 0 and 1/2A. The total time of observation of the signal is T
seconds and is such that 7' = N A. Starting at time 0, N samples of the signal are
taken at A second intervals yielding the values z(0), x(A),...z(t°A), ... z[(N —
1)A]. This is sampling at the Nyquist rate. For simplicity, let N be even; it is
not a confining restriction. Because of the bandwidth limitation, the Fourier series
representation for the continuous z(t) during this time span is given by

N/2
z(t) = AT2(O) + Z[AT(n) coS 27;1”75 + Br(n)sin y] (1.16)
n=1

which is the same as Eq. (1.6) except that the upper limit for the index n is now
N/2 instead of infinity. The integer N/2 is associated with frequency N/(27) =
1/2A = F, the highest frequency present in x(¢). It is also true that whenz(t)
is bandlimited and periodic the coefficient Br(N/2) = 0 (cf., Hamming, 1973).
We can thus see from Eq. (1.15) that we need to evaluate a total of NV coeffi-
cients for a complete representation of x(¢). These can be evaluated by means
of Eq. (1.7) or they can be obtained from the /N sample value in a manner to be
discussed in Chapter 3. What should be emphasized here is that sampling at the
Nyquist rate provides just as many time samples as are necessary to evaluate the
Fourier coefficients uniquely. That is, the sample values in themselves contain all
the information necessary to completely reconstruct x(¢) provided its band limit is
related to the sampling interval A by the equation F' = 1/2A. Restating this in a
slightly different way, as long as the 7" sec sample of signal z(¢) can be represented
by a Fourier series, all of whose coefficients are O for the terms higher in frequency
than 1/2A, the sampling process is guaranteed to represent all the information or
structure in the signal.
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When the signal bandwidth is larger than 1/2A, a number of difficulties ensue
in the processing of the data. These we discuss in more detail in Chapters 2 and 3.
Briefly however, the data processing proceeds just as though the signal were band
limited. But when the Fourier coefficients are determined from the sample values,
each may suffer an error whose size depends upon the amount by which the signal
bandwidth F' exceeds 1/(2A). The greater this excess is, the greater the errors and
the less adequate are the samples as a representation of the signal. Many rather
serious misinterpretations are likely to arise if this situation goes unrecognized. It
is up to the investigator to see to it that the bandwidth of the signal is suitable for
the sampling rate employed. Caution is required. Preliminary spectrum analysis
performed by instruments specifically designed for this is often called for.

Thus far we have not been concerned with whether the 71" sec signal segment
would periodically recur during an arbitrarily long observation time, or whether
the segment is one glimpse of an infinite number of possible manifestations of
signal activity, none of which ever recur. The sampling process is indifferent to
these alternatives. Nonetheless, there is a distinction to be made in the kinds of
spectra associated with each. When the signal is band limited and truly periodic
with period 7', doubling the time of observation to 27" would yield a Fourier series
in which the A7 (n), Br(n) and X7(n) are different from O only when n/2 is
an integer, where now 0 < n < T'/A. If a 3T segment of signal were used and
a Fourier series obtained from it, the nonzero terms would correspond to integer
values of n/3, etc. That is, the frequency spectrum would exhibit components only
at a discrete set of frequencies corresponding to harmonics of the basic period 7T'.

Periodic signals thus possess discrete or line spectra, related to the repetition
period, not the time of observation.

1.7 Autocovariance Functions and Power Spectra of Peri-
odic Signals

The nature of a signal’s temporal structure is often investigated by means of auto-
covariance function analysis. It is a method of comparing or correlating the signal
with a replica of itself delayed in time. The autocovariance function takes on a
continuous form for continuous signals and a discrete form for discrete signals.
It provides an indication of the degree to which a signal’s amplitude at one time
relates to or can be inferred from its amplitude at another time. There are other
measures of signal temporal variability but correlation thus far has proved to be the
most useful though it is not without flaws. The autocovariance function receives
its name by being an extension of the statistical covariance measures for random
variables = and y. From statistics, the covariance of = and y, written Cov(z, y), is
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the average or expectation value of the product (z — 1) * (y — 1) where f1,, and g,
are the average values of x and y. Suppose now that x = z(¢) and y = x(t + 7) .
The covariance of x(t) and x(t+7) is seen to be a function of their time separation,
7 . Because the covariance is that of an individual signal, it is called an autoco-
variance. If, in addition, x(¢) is periodic with period 7" and has zero mean, we can
define the autocovariance function (acvf) for () as the average of z(t) - x*(t +7):

1

T
Ty (T) = T/o x(t) - x*(t+7)dt (1.17)

Though x(¢) is real, its complex conjugate is used here to facilitate later consider-
ation of the power spectrum associated with x(¢) . If the mean of z(¢) is not zero,
the right hand side of Eq. (1.16) is referred to as an autocorrelation function. It can
be converted to an acvf by subtracting out the mean, p,. The product being aver-
aged would then be [x(t) — p] - [«*(t + 7) — p]. Unless otherwise stated, the time
functions we deal with will be considered to have zero mean or to have had their
nonzero means removed first. Because the signal here is periodic, averaging needs
to be carried out only over the time interval T'. A longer averaging time than this
is of no value since it only repeats measurements of amplitude products already
obtained. For this reason ¢, (7) is itself periodic with the same period 7" as that of
the signal. The time required to measure the acvf for one value of time separation
is the period T'. This means that as 7" increases, so does the computation time.

The data processing operation called for in Eq. (1.16) is a continuous one uti-
lizing the signal amplitudes at all times during One of its periods. The computation
must also be carried out for all possible time lags up to 7" and so it can be seen that
unless some type of sampling procedure involving 7 is possible, the total time re-
quired to estimate the acvf is infinite. Fortunately, when the signal is band limited,
there is a valid sampling procedure that makes the computation feasible. It uses
the sequence of signal samples A seconds apart that were shown to fully represent
a band limited signal. The acvf of the sampled signal 7" sec in duration is formed
by the products of each sample and a second sample delayed in time from it by
7° sample intervals. The N (= 7'/A) individual products are then summed and
divided by the total rider of sample products to obtain

Cae(T°A) Z N — 12(t°A)z*[(t° + 7°)A] (1.18)

If we now substitute for z(t°A) and z*[(t° + 7°)A] their Fourier series repre-
sentations as given by Eq. (1.8) and then interchange the order of summations, we
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find that

N/2—1

Car(T°A) = Y |Xp(n)? exp
n=—N/2

j2mnT°A

7 (1.19)

Here, in substituting for z*[(¢° 4+ 7°)A] we have used the complex conjugate
of the series in Eq. (1.8). This shows that the acvf of the sampled signal can be ex-
pressed by a Fourier series whose coefficients | X7 (n)|? are completely determined
by those of the original signal. Henceforth we represent | X7 (n)|? by Cpz(n). On
occasion we will also use the notation C( f,) where f,, = n/T, so as to relate this
more easily to the spectrum of aperiodic signals. C,,(f,) is the power spectrum
of z(t) , the distribution of signal power or variance at the harmonically related
frequencies f,.

Now let us return to the definition of the acvf of a continuous periodic signal
as given in Eq. (1.16). Here we also substitute the Fourier series representation of
Eq. (1.8) for z(t). Performance of integration and then summation yields

Nzt j2mnT
Cor(T) = Y Cagexp 7 (1.20)

n=—N/2

When 7 = 7°A, this is the same as Eq. (1.18). This shows that the acvf of the
sampled band limited signal has the same values at the sample times as the acvf
of the original signal. It can be shown further that ¢, (7) is itself a band limited
signal in the 7 domain and therefore that it can be completely reconstructed at all
values of 7 by using the coefficients C;,(n). Thus the acvf of the sampled signal
completely represents the acvf of the continuous signal. Note that C,,(n) is the
previously defined power spectrum of z(t¢) and is given by the inverse relationship

1 (7 —j2mnT
Cu(n) = T/o cmexpdeT (1.21)

This is an important relationship between the acvf and the power spectral den-
sity of the signal. We also point out that Cy;(n) = Cy,(—n) and consequently
that ¢4, (7) = ¢z (—7). Another important relation that applies to band limited
periodic signals is

—j2mnT°

N-1
1
Caa(n) = > coa(°A) exp N (1.22)
T7°=0

This shows how the Fourier coefficients are related to the N values of the acvf
at the times 7°A. It will be discussed in more detail in Chapter 3.
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Since Cyy(n) = Cyy(—n), the true autocovariance function is defined by N/2
parameters in distinction to the N required for x(¢). What has happened is that
the autocovariance procedure has removed the phase structure properties given by
the A7 (n) and By (n) and left only the C;(n) terms measuring the power of the
individual frequency components that describe x(¢). It is important to note that the
absence of phase information in the autocovariance function makes it impossible
to deduce from the acvf the waveform of the signal that produced it. Thus an
individual autocovariance function or power spectrum can be obtained from an
infinite number of signals differing only in their phase structure.

1.8 Aperiodic Signals

In contrast to the periodic signal, the aperiodic signal would, when the observation
time is increased to 2T, then 3T, etc., yield nonzero values for the Ap(n), Br(n)
and Xp(n) regardless of the value of n. By making the observation time large
enough, we can make the frequencies at which we measure the spectral intensity as
close as we like. In the limit, as 7" becomes infinite, the lines merge to a continuous
spectrum that is characteristic of aperiodic signals. Aperiodic signals are treated
by means of a generalization of the Fourier spectrum, the Fourier transform,

X(f) = /Oo o (t) exp j2r ft dt (123)

—0o0

X (f) is referred to as the Fourier transform of the signal x(¢). x(¢) can be recov-
ered from its transform by the inverse Fourier transfom,

x(t) = /OO X(f)expj2nftdf (1.24)

The Fourier transform is useful not only with aperiodic signals, as for example
the EEG where we deal with its power Spectral density, but also with transitory
signals which exist for only a short period of time, such as the nerve impulse and
the impulse response of signal filters to be discussed in Chapter 2. In this case
the energy of the response is more important than its power and we deal with the
energy spectral density.
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1.9 Autocovariance Functions and Power Spectra of Ape-
riodic Signals

When we pass from the periodic signal to the aperiodic (by extending to infinity
the period of repetition), the expression for ¢, (7) becomes

T
Crz(7) = lim 1/0 x(t)x*(t+7)dt (1.25)

In the situation of the infinite interval, the Fourier power spectral density for the
signal passes from a series to an integral representation similar to that given in Eq.
(1.18). As a result, the relationships between autocovariance function and power
spectral density for the aperiodic signal become (Jenkins and Watts, 1968)

Coa(f) = / " o (7) exp(—j2n fr) dr (126)

— 00

while the inverse relationship is
oo
Coz(T) = / Crz(f) exp(—j2m f7) df (1.27)
— 00

Both f and T can range from plus to minus infinity. Here, C,,(f) is the power
spectral density of the signal x(t), the amount of signal power in the small frequency
band from f to f 4 df. This pair of equations is referred to as a Fourier transform
pair. The knowledge of either function permits unique determination of the other.

An idealized spectrum whose shape is somewhat typical of continuous signals
is shown in Fig. 1.6. It has significant components below F', the cut-off frequency.
As the frequency increases above F, the spectral intensity falls rather sharply. The
width of the region below F' in which C,,(f) is near its maximum value is the
bandwidth of the signal. As with periodic signals, if the frequency components of
the signal actually vanish at all frequencies above F', the signal is said to be band
limited with bandwidth F'.

Aperiodic signals that are band limited to f = 1/2A also can be represented
exactly by their sample values at times A sec apart and these sample amplitudes
permit estimation of the covariance function and the spectrum of the signal. The
distinction between an estimate of a function and the function itself is made in Sec-
tion 1.12. Some difficulties are encountered when a 7" sec segment of an aperiodic
signal is considered. These difficulties affect the adequacy of the representation of
the signal by its T-discrete version near the beginning and end of the segment. They
arise when we consider an aperiodic signal to be one period of a periodic wave that
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Cxx(f)

Figure 1.6: Fig. 1.6. A hypothetical spectrum C,(f) of an aperiodic signal. F is
the cutoff frequency.

repeats itself continually outside the time of observation. This artifice, comnly em-
ployed in the analysis of finite lengths of data, yields a discrete or line spectrum
with components at integer multiples of 1/7". The original signal, of course, has a
continuous spectrum. Finally, since we have only a finite the to accumulate data,
we can never obtain the precise autocovariance function and spectrum of the aperi-
odic signal regardless of whether there is noise interference. What we do obtain is
estimates of them. The goodness of the estimates varies with the time available for
observing the data. These are matters of great importance that are to be discussed
in Chapter 3.

1.10 Cross covariance functions and cross spectra for a
pair of periodic signals

There are many circumstances in which the data to be analyzed consist of two or
more signals whose interrelationships are interesting. The relationship between an
external stimulus and the several responses it gives rise to is also of considerable
interest. The autocovariance function of a signal cannot cope with these matters
because it deals only with the internal structure of an isolated signal. The analysis
of signal interrelationships is a more complex affair. One approach to this general
problem is via the use of the cross covariance function. A cross covariance function
(cevf) differs from the autocovariance function only in that the delayed signal x(t+
7) is replaced by y(¢+7), the delayed version of the second of the two signals being
analyzed. The two signals are now denoted as z(t) and y(t). The cross covariance
function is therefore an indication of the degree to which one signal’s amplitude at
one time relates to or can be inferred from a second signal’s amplitude at another

DAD. Please do not duplicate or distribute without asking.



34 CHAPTER 1. BASIC SIGNAL PROCESSING

time. If both signals have period T, the cross covariance function also will have the
same period and can be written

1 T
ery(7) = = /0 syt + 7) di (1.28)

T
The ccvf is obtained by continuous processing of the two signal waveforms.

For the ccvf there is a spectral counterpart, the cross spectrum which has a
relationship to the ccvf similar to that which the spectrum has to the acvf. To see
this we express the periodic ¢, (7) of Eq. (1.27) in terms of the complex Fourier
series:

Nzl j2mnT
Caoy(T) = Z Cyy(n) exp T (1.29)

n=—N/2

It is the set of coefficients which we call the cross spectrum. Cy, (1) is given by

1T —j2mnT
Cary(n) = T/o Cay(T) exp JT dr (1.30)

If we then substitute for the ccvf the right-hand side of this equation and replace
both z(t) and y* (¢ + 7) by their Fourier expansions, we obtain, after carrying out
the indicated integrations,

Coy(n) = Xr(n)Vi(n) (1.31)

X7(n) and Y (n) are the Fourier coefficients for signals x and y. Thus the cross
spectrum is the complex conjugate product of the Fourier series for each of the
constituent signals. If we now substitute Eq. (1.30) in Eq. (1.28), we obtain

N/2—1

Cay(T) = Y Xr(n)Yf(n)exp j2mnrT (1.32)
n=N/2

This is to be compared with Eq. (1.21) which relates the ccvf to its spectrum.

The ccvf and cross spectrum can be extended as well to aperiodic signals. This
involves the same limiting procedure as T in Eq. (1.27) that was used with the au-
tocovariance function. In this instance we have the Fourier transform pair relating
the ccvf and cross spectrum:

Coy(f) = /OO Cay(T) exp(—j2m f1)dr (1.33)
o7 = [ Coyespliafoyds (134
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1.11. SUMMARY: PROPERTIES OF COVARIANCE FUNCTIONS &
35 SPECTRA

Cross covariance functions and cross spectra can be defined for sampled sig-
nals. The ccvf of two sampled periodic signals is defined by

1 N—-1
Cay(T°0) = = S S A (1 + 7)) (1.35)

t°=0
We can proceed as before to show that

N/2-1

Coy(T°A) = Z X7 (n)Yr(n)exp
n=—N/2

j2mnT°A

T (1.36)

The cross spectrum, Cy, (1), originally defined in Eq. (1.29), is also given by

1 Nzl o —j2mnT° A
Cay(n) = N Z Cay(T°A) exp ——F (1.37)
T°=—N/2

This is the cross spectral counterpart of Eq. (1.23). Equation (1.35) shows
that the ccvf is defined by IV coefficients of the form X¢(n)Y;i(n). The original
signals each require N coefficients, the set of X7 (n) and Y (n) to describe them.
Since the coefficients appear together in Eq. (1.35) as products, there is no way
of separating them unless either x(¢) or y(t) is also known. Thus the ccvf and its
companion cross spectral density do not by themselves preserve all of the informa-
tion in the two signal waveforms. Remember that the same statement was made of
the acvf and spectrum of a single signal.

1.11 Summary: properties of covariance functions & spec-
tra

There are several properties of covariance functions spectra that are worthwhile
noting here. They are stated in terms of the continuous covariance functions but,
except for A3, apply equally well to covariance functions and spectra of sampled
signals. No proof of these properties is given here. They are easy to derive and
more will be said of them in Chapter 3.

1.11.1 Autocovariance functions and power spectra

1. ¢4z (T) is an even function of time, i.e., 32 (7) = cgz(—7).

2. The maximum value of czz(7) occurs at 7 = 0.
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3. If (t) is continuous, ¢, (7) is continuous also.

4. The power spectral density of z(t) is real and an even function of frequency:

sz(f) =Cy (‘f)

1.11.2 Cross covariance functions and cross spectra
1. czy(7) is not necessarily an even function of time. In general, c;,(7) =
Cya(—T).
2. The maximum value of ¢, (7) does not necessarily occur at 7 = 0.

3. If 2(t) and y(¢) are continuous, c,,(7) is continuous also.

4. The cross spectral density of x(t) and y(t) is complex Tnd . (f) = Cy, (- f).

Though these by no means exhaust the interesting properties of covariance func-
tions and spectra, they are the most important in terms of a working knowledge
useful for ordinary signal analysis problems.

1.12 Random or probabilistic signals

In the previous section we have considered aperiodic signals and the manner of
representing them in terms of their covariance functions and spectral densities. To
do this we employed the artifice of considering such signals to be an extension of
the more simple periodic signals with the period of these signals becoming infinite.
This is a useful approach to deterministic but aperiodic signals since it provides a
straightforward frequency domain description .

A simple example of a deterministic aperiodic signal is i

x(t) = sin 27 ft + sin 2m+/(2) 1 (1.38)

Although it is impossible to find a finite value of t corresponding to a repetition
period for this signal, it does possess a power spectrum and an autocovariance
function, both of which can be found easily. The signal is bandwidth limited,
nonrandom and aperiodic, although its two components individually are periodic.
Its behavior for all time is known from its functional form. We can infallibly predict
its future behavior and also state how it behaved in the remote past. To see how
this can be done, we recall from calculus that an explicit function of time can be
described exactly for all time in terms of a Taylor series expansion provided that
all its derivatives are known at some arbitrary time. Its past and future history
are completely specified by the values of these derivatives at that time. If, on the

DAD. Please do not duplicate or distribute without asking.



37 1.12. RANDOM OR PROBABILISTIC SIGNALS

other hand, not all the higher derivatives exist (in the sense that they “blow up”),
or if they cannot be measured, and practically they cannot, then the past and future
history of the function or signal cannot possibly be determined infallibly.

Nondeterministic signals, and neurobiological signals are generally in this cat-
egory, cannot be inherently described by an explicit equation valid for all time
either because (a) although it may be possible to determine one, we do not have
all the information at hand to permit doing so, or (b) it is inherent in the nature of
the signal that it cannot be so described. Both cases are of considerable biological
interest, with the latter case being especially so for both theoretical and practical
reasons. The principal examples of nondeterministic neurobiological signals are
(a) the spike activity of a single neuron or a small group of isolated neurons, and
(b) the electroencephalogram (EEG). The signals are nondeterministic because the
mechanisms responsible for them are subject to internal and external influences
which can never be completely described. Signals that have these properties are
spoken of as being random for their behavior follows or seems to follow prob-
abilistic rather than deterministic laws. They are manifestations of random pro-
cesses, biological or nonbiological, that are themselves governed by probabilistic
laws. In describing random signals we speak of their probability density functions,
their means, variances, covariance functions, power spectra, and other statistical
measures, and not about their functional descriptions except where it is occasion-
ally useful to do so, as with the alpha bursts of the EEG. The probabilistic nature of
a biological signal may not be entirely due to its generating process. Quite often,
such a signal is observed in a background of other electrical activity unrelated to
it. This activity is considered to be noise and may arise from other sources within
the nervous system or it may arise from the measuring instrumentation itself. In
either case its presence obscures the signal of interest making it more difficult to
detect and analyze. Even though the signal being observed may be deterministic
or nearly so, as in the case of the cochlear microphonic, its combination with the
interfering noise makes the resulting mixture also qualify as a random signal. The
reason is that noise is itself an example of a random process, different from the
signal mainly in that the process that gives rise to it is not the one being studied.
we exclude from our discussion of noise such phenomena as power line interfer-
ence and stray electroma etic emissions from radio sources. Troublesome though
these may be, they can be eliminated by careful laboratory practices. The noise
which we are considering is an inherent basic constituent of an emerinent. It may
be minimized to some extent but can never be eliminated. Sanewhat different but
also noiselike are the data corrupting effects produced by signal quantization and
by jitter in the time of smpling of the signal. These effects are inherent in the data
processing operations and are treated in Chapter 2.

Random signals are best understood by considering the properties of a collec-
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tion or ensemble of them as generated by their associated random process. This
ensemble of signals characterizes the process. It can be, for exanple, a collection
of all particular samples of signal of some given length T generated by the pro-
cess. Each member of the collection is a unique function of time different from
the others and is referred to generally as a sample function or as a realization. !tb
avoid confusion with the physical sampling process, we will adopt an alternate
designation, specimen function. The specimen functions of an ensemble might be,
for example, a collection of ten-minute parietal lobe EEGs obtained from awake
normal males between the ages of 20 and 30. A wide variety of EEG wavefoms
may be included in the ensemble, each being a different realization generated by
the underlying process. The fact that there can be substantial differences within an
observed collection of specimen functions often leads to the question of whether
or not there is but a single process responsible for the observations. Sometimes
the specimen functions are so different as to make it obvious that they come from
different processes; in other cases the differences are more subtle and considerable
uncertainty arises as to whether more than one process is at work. It is possible to
test the hypothesis of a single process being the source of the collected specimen
functions although we shall not explore this problem. Some aspects of hypothesis
testing are discussed in Section 1.17.

The existence of an ensemble of specimen functions makes it possible to de-
scribe the generating process in terms of the statistical measures of the ensemble.
These measures are taken across the ensemble, each specimen function being but
one member of the population. This concept of the statistical measure of an en-
semble is to be distinguished from the previously employed time averages that are
performed on a single member of an ensemble. Time averages tell us only of the
properties of the individual ensemble member. They are rather easy to perform
experimentally. When the averaging time is taken to the limit, infinite time, we
have the definitions of the mean, variance and covariance function of the signal.
Ensemble averages, in contrast, describe the overall properties of the process in
terms of the ensemble. Thus, we can speak of the expected value of the ensem-
ble of functions x(t) at a particular time, E[x(t)], or the variance var|z(t)] or the
autocovariance function E[z(t)x(t + 7)]. But they are more difficult to deal with
experimentally because they require measurements of many ensemble members.
However, the value of the ensemble approach is that it leads to a far more pen-
etrating understanding of the random process. The concept of a random process
and its associated ensemble of specimen functions also applies not just to continu-
ous siqgals but so to the sampled version of a continuous random signal, to a screte
signal, or to some function derived from originally connuous or discrete signals.
An example of the last is the number of alpha bursts per ten-second interval as
observed in each of the ten-minute EEGs previously described.

DAD. Please do not duplicate or distribute without asking.



39 1.12. RANDOM OR PROBABILISTIC SIGNALS

Suppose we now consider the value of a specimen function z(t) at a particular
time ¢’. Each member of the ensemble x(¢) will range over a set of permissible
values in a probabilistic way that is determined by the random process itself. x(¢")
is thus said to be a random variable. It is in fact a function whose value depends
upon the many underlying events associated with the random process. To illustrate,
an observer monitors the EEG tracing of a normal sleeping adult through the night
in order to study its fluctuating patterns. He classifies the sleep status of the indi-
vidual at any time into one of six different states: awake, stages 1 through 4, and
rapid eye movement (REM) sleep. He does this by analyzing the fluctuations in the
EEG during the minute preceding each classification. He proceeds to do so for a
number of subjects for each of which he constructs a chart of the type shown in Fig.
1.7. The sleep states are assigned values 0 to 5. The z(t) resulting is a specimen
function of the sleep process. The value of (), at 1AM, say, 2(0100) is a random
variable which can take on one of six different values for each of the subjects. The
frequency with which the different values occur is determined by the sleep pro-
cess and the observer’s judgments of the EEGs associated with it. Assuming the
validity of the observer’s procedures, the result is a new, A-discrete, T-continuous
signal derived (or filtered) from the EEG. Each of the six possible levels of the
signal corresponds to an event, the sleep state of the subject, and the six possible
events cover all the possible states that the subject can be in at any time. We can
refer to these events in terms of an event or sample space. The sample space we
have used here has a single dimension, depth of sleep, and it has a finite number
of events in it, six. More generally, event spaces can be multidimensional and they
can also be continuous with an uncountably infinite number of events possible. An
example of a single-dimensional sample space with an infinite number of events in
it is the temperature of a particular location of the body. If sleep were defined in
terms of the original six states of the EEG and temperature of the hypothalamus,
say, the event space of interest would be twodimensional, one dimension being dis-
crete and the other continuous. An example of a five-dimensional continuous event
space is the possible set of EEG voltages from a particular electrode at five instants
that are one second apart. Sample spaces are used to describe specimen functions
and the processes they arise from, and can be discrete or continuous according to
whether the specimen functions are A-discrete or continuous. This is regardless of
whether the specimen functions are T-discrete or continuous. In the sleep example
the two-hour records of sleep states are A-discrete, T-continuous.

By making a small change in the manner of performing the previous experi-
ment we can obtain a T-discrete specimen function instead. This would be accom-
plished by periodic examination of one-minute segments of the EEG at fifteen-
minute intervals, say, and classification of them into sleep stages at those times.
Under these circumstances the number of random variates is equal to the number
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Figure 1.7: Fig. 1.7. Sleep as classified by the ongoing EEG into one of six
possible states existing between the hours of midnight (0) and 2 AM (0200).

of samples obtained for each specimen function while the properties of the indi-
vidual random variables are the same as under the continuous case.

The two kinds of spaces, specimen space for the specimen functions and sam-
ple space for the random variables, should not be confused. Since a specimen
function is composed of the sequence of particular values assumed by a random
variable, it may be useful to note that a point in specimen space can be considered
to represent a particular trajectory traveled by the random variable in sample space
as the sampling proceeds.

1.13 Some important probability distributions

1.13.1 Probabilistic description of dynamic processes

Basic to the study of dynamic probabilistic processes is a knowledge of the statis-
tical properties of their random variables. This applies, first of all, to the derivation
of the theoretical behavior of these processes, for, in most situations, they can be
analyzed only after the probabilistic laws have been specified. It applies, secondly,
to the validity of experimental data analyses which are generally dependent upon
how the data conform to these laws.

In the case of continuous processes, the Gaussian probability distribution has
been found to be by far the most applicable to them. Most of the work done on
dynamic processes has been centered upon those that have Gaussian properties
insofar as the amplitude fluctuations of the random variables are concerned. It
is worth noting, moreover, that many of the statistical techniques that have been
developed for testing Gaussian processes have also been found applicable to the
study of some non-Gaussian processes. Such tests have been labeled “robust” for
this reason and in recent years extensive efforts have been devoted to the devel-
opment of such statistical techniques. Nonetheless, it is the Gaussian probability

DAD. Please do not duplicate or distribute without asking.



41 1.13. SOME IMPORTANT PROBABILITY DISTRIBUTIONS

distribution which is basic to the understanding of continuous processes. We shall,
therefore, summarize some of its basic properties.

Another distribution of great importance to both continuous and point process
analysis is the chi-squared distribution. It arises not because it is a description of
either continuous or point process random variables but because it gives an effec-
tive way of dealing with the sums of Gaussian or exponential random variables
that are encountered in the statistical analyses of long records of data. The chi-
squared distribution offers a compact representation of such data and also is a help
in developing insights into the strengths and weaknesses of a variety of statistical
tests.

A third probability distribution that is encountered extensively in neurophys-
iological work is the exponential distribution. It finds its application in the study
of sequences of action potentials generated by individual neurons. These are se-
quences in which the times of occurrence of events are the only data of importance.
The processes generating the events are referred to as point processes and we shall
have more to say about them in Chapters 6 through 8. In the remaining part of this
section we shall briefly summarize some of the basic properties of the Gaussian,
chi-squared and exponential distributions. A more detailed exposition of them may
be found in such standard texts as Mood (1950) and Cram (1946).

1.13.2 The Gaussian distribution

A random variable X is said to be Gaussianly or normally distributed if its proba-
bility density function is

1 —(z —p)?
exp [ 7

oV2m 20

where x can take on any positive value or negative value. The mean of the random

variable is x and its variance is o2. These follow from the definition of the nth
moment and nth central moment of a random variable:

prob{r < X <z +dx}/dx =p(x) = (1.39)

Bt = [ o@yde Ele-p = [ @-pfae)de 140

—00 —0o0

Also, the second central moment E[(z — p;)?] = var(x). The Gaussian or normal
distributlon occurs so frequencly as to warrant a special notation. A Gaussian ran-
dom variable with mean y and standard deviation o is said to be "normal (u, o)”.
All the odd order central moments of a normal random variable are zero. This
follows from the fact that the Gaussian density function is symmetrical about its

DAD. Please do not duplicate or distribute without asking.



42 CHAPTER 1. BASIC SIGNAL PROCESSING

mean. The even moments of the normal (0, o) random variable are given by

Elz"]=1-3-...(2n—1)o™ (1.41)

If we have a sum of NV random variables, x;, the sum of their means is the mean
of their sum. If the random variables are independent, the sum of their variances is
the variance of their sum.

If the random variables are also normal (y,,0,,), then their sum y is also
normal with mean and variance given by

N
py =Y pzy and  or =Y op (1.42)
1=1 ]

When the 2 are normal and identically distributed (u, o), then y is normal (N u, No).
Should the x; not be independent, their sum will still be normal but the sum of their
variances will not be equal to the variance of their sum.

A useful characterization of a random variable is its coefficient of variation
(cvar), the ratio of its standard deviation to its mean. For the sum of N identically
distributed normal random variables we have

oy o

cvarjly] = — =
2 py  N1/2p

(1.43)
This result will be applied to signal averaging as discussed in Chapter 4.

1.13.3 The Chi-Squared Distribution

The chi-squared distribution describes a family of probability distributions. The
first member of the family is the distribution of the random variable x? which is
the square of a normal random variable (0,1). X2 is restricted to values that are O or
greater.

In this case we have the probability distribution

12 exp(—x/2)
V2

prob[z < x? < z + dx]
dx

=p(z) =

(1.44)

The mean and variance of this distribution are E[x?] = 1 and var[x?] = 2.
More generally, the random variable X?\/ is defined as the sum of the squares of N
independent and identically distributed normal random variables (0, ). The sub-
script IV, since it represents the number of independent normal random variables
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composing X?v’ is often referred to as the number of degrees of freedom (d.f.) of
the chi-squared random variable.

X = (1.45)

The probability density function for x4 is given by

2% Lexp(—x/2)

N N TE)

(1.46)

where T'(+) is the well-known gamma function.
Since X?\/ is just the sum of NV random variables, its mean and variance are seen
to be given by
Elx4%] =N,  war[x%] =2N (1.47)

When the z;’s are independent and normal (O, o), the sum of N of them is
distributed according to o%x3;. Hence, E[Y_ 2?] = No? and var[}_ 2?] = 2No*.
It can be shown that as N becomes large, the distribution of X?\, approaches the
normal with mean and variance given by Eq. (Just above). This is often a useful
approximation when N < 30.

The sum Sk of the squares of K independent normally distributed random
variables is not distributed according to chi-squared when the random variables do
not have identical distributions. Nonetheless, the distribution of this sum is suffi-
ciently close to such a chi-squared distribution as to justify its approximation as
such. To arrive at the approximation, one merely finds the hypothetical x? random
variable which has the same mean and variance. Thus one sets

E[Sk] = (d.f.) o and var[Sk] = 2(d.f.)o* (1.48)
d.f. here takes the place of NV in the preceding paragraph.
This yields
E?[Sk] 5 wvar[Sk]
d.f.=2———= d = —— 1.49
/ var[Sk]’ o ? 2F[Sk] (1.49)

The sum of the K squared normal random variables is said to possess the number
of equivalent” degrees of freedom given by Eq. (1.47). A similar technique can
be used with the sum of K = 3 random variables that do not have the same mean
and variance. If they were identically distributed, their sum would be chi-squared
with 2K of freedom; if not, the number of equivalent degrees of freedom is always
less. Note also from Eq. (1.47) that

(d.f.)evar?[Sk] = 2 (1.50)
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These aspects of the chi-squared distribution have important applications to spec-
tral smoothing discussed in Chapter 3.

1.13.4 The Exponential Distribution

The probability density function for the exponentially distributed random variable
is given by

vexp(—vzx), = >0
pr— 1.51
p(z) {0, =0 (1.51)

The mean and variance of the exponential random variable can easily be shown to
be
E[X]=1/v  warlz] = E[z%] — E*[z] = 1/1/* (1.52)

From this it follows that cvar[z] = 1. The sum of M independently and identically
distributed exponential random variables is distributed according to what is known
as a gamma distribution:

v(vr)N-1

p(z) = mexp(—ya:) (1.53)

The mean and variance of this sum are, as might be anticipated
Elz] = N/v  warlz] = N?/v? (1.54)

We show the form of the gamma distribution because it is closely related to
the chi-squared distribution. If we consider a random variable which is 2v times
the random variable in Eq. (1.49), i.e., a random variable whose mean is 2 , we
find that the sum of such random variables has a X%  distribution. This property
of sums of exponentially distributed random variables will be discussed more in
Chapter 6. It is also true that as N becomes large, the sum of N exponentially
distributed random variables becomes nearly normal with mean 2N and variance
4N.

1.13.5 Ensemble Autocovariance Functions

Statistical measures of ensembles of signals generated by random processes are
defined in terms of the probability density functions (PDFs) or cumulative distri-
bution functions (CDFs) of the ensemble. The mean of the ensemble x(t) is given
by
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where for convenience we have written 2:(t) as ;. p(x;) is the PDF of the ensemble
of signals at time ¢ and the integration is over all values of x;. Here x; represents
either a continuous or a sampled random variable. p(z;)dt is the probability that
at time ¢t a member of the signal ensemble will take on some value between x; and
x¢ + dxy Similarly, the variance of x; is defined by

varlzy] = Elxy — pgy) = /(mt — mgy)?p(2y) day (1.56)

where p,;; = FE[z;] The ensemble autocovariance function (acvf) is defined in
terms of the expected value of the product of the amplitudes of the signal at ¢ and
u:

cov[zy, Ty| = Cpp(t,u) = E[(xp — o) (Ty — fay) ] (1.57)

The asterisk denotes the complex conjugate. Even though x is real (making
x* = x), its presence facilitates later consideration of the spectrum of the process.
In most cases the average value of z is of no interest and can be subtracted from
the data. This makes p;; = O for all ¢. The covariance function is then just the
product E[x;a}]. Determination of the ensemble acvf requires knowledge of the
ensemble at times ¢ and u:

Coz(t,u) = /(:Ut — o) (T — pay) Pt T4 dy dy, (1.58)

The integration is over all values of x; and x,,. While the ensemble acvf su-
perficially bears little resemblance to the time acvf of an individual signal, Eq.
(1.24), it will be shown later that the two are in fact closely related and in many
important instances are equal. The acvf is a measure of how the fluctuations of
the signal amplitude at two different times are related to one another. A positive
covariance indicate that when one is greater (or less) than its mean value, the other
tends to be also. A negative covariance, on the other hand, indicates that when one
is greater than its mean, the other tends to be lower than its mean. The normalized
autocovariance function is

cov|xy, T} ]

pz(t,u) = (1.59)

var[xivar(c,)
It ranges in value from —1 to +1.
If a pair of variables, herex; and z,,, are statistically independent, it is generally
true that
Elzy,xy) = E|xy|E[x,] (1.60)

It follows that there is O covariance between statistically independent random vari-
ables. Random variables which have 0 covariance are said to be uncorrelated.
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However, it is not necessary for a pair of random variables to be independent in
order for the mean of their product to be equal to the product of their means. Thus,
lack of correlation does not imply statistical independence except in special in-
stances. Gaussianly distributed random variables are particularly interesting in this
regard. If z; and z,, are Gaussian random variables and uncorrelated, then they
are also statistically independent. This is the most commonly encountered case in
which zero correlation implies statistical independence. Serious errors can often
result if one assumes statistical independence only on the basis of lack of corre-
lation. An example of two random variables that are uncorrelated but statistically
independent is x = sinf and y = sin26, where 6 is some arbitrary random vari-
able.

1.14 Ensemble Autocovariance and Cross Covariance Func-
tions, and Stationarity

Some basic properties of the ensemble autocovariance function deserve special
mention:

e It is an even function of time:

Coz(t,u) = cpz(u, t)(1.59)

e Its maximum value occurs when ¢ ~ wu and is the variance of the random
variable:
Caz(t,t) = var[xy > cp(t,u)

If a process possesses an autocovariance function in which times ¢ and u always
appear in the form of a time difference t—u & T, the process is said to be stationary.
The covariance properties are then dependent only upon relative times, not upon
any absolute value of time. Thus in terms of covariance properties, the process is
the same throughout all time. The covariance function notation for a stationary
process can be written as ¢, (7 and we shall generally do so. For covariance
stationary processes ¢, (0) = var[z;] = o2 is the average power of the process
contributed by the fluctuations. An example of a covariance stationary process is
the white noise n(¢) generated in electrical resistors. The amplitude of white noise
at any one time is statistically independent from its value at any other time. Its
covariance function can be shown to be:

Can(t,u) = cpn(T) = 02 p(t) (1.61)

This means the noise amplitudes at two different times are without correlation.
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when we are interested in correlating the behavior of specimen functions be-
longing to two different ensembles, we employ the ensemble cross-covariance
function (ccvf). Thus, for specimen functions x(¢) and y(t)

Cay(t4) = Bl(we — o) (yu — 11y,)1(1.62) (1.62)

As with the autocovariance function, average values are often of little interest and
can be removed from the data. This makes the ccvf equal to E[x;y;]. In contrast to
the autocovariance function, the cross-covariance function is not an even function
of time nor does it always have a maximum at ¢ = u or at 7 = 0 when the processes
are stationary.

An example of the dependency of the autocovariance function upon the times
t and u is the autocovariance function that would obtained from the membrane
potentials of a population of cells that have been damaged in exactly the same
way at ¢ = 0 and then gradually healed. First there is a sudden depolarization
in membrane potential at the instant of injury. Then, during the healing process
there is a slow recovery of the resting membrane potential to its pre-injury level.
Different cells have different initial changes in membrane potential and different
rates of recovery or ghearling. For extreme but useful simplicity, let the membrane
voltage during early stages of recovery be represented by the equation

o(t) = Vo + kt (1.63)

Vp is the initial value of membrane potential immediatly after injury and k& the ini-
tial rate of recovery. Both are assumed independent random variables with means
V' and k respectively. The autocovariance function for v is given by

e (t,u) = El(ve — Ug) (vy — Uq)*](1.64) (1.64)
After some straightforward manipulations, this becomes
Cop(t, u) = var[Vo] + t.u.var(k] (1.65)

This is a reasonable approximation to the covariance function in the tne early stages
of recovery where linear Eq. (1.63) is a valid representation of the membrane
potential. Notice (a) that the covariance function was obtained from the variances
and without the knowledge of the probability distributions of the variables; and (b)
that the covariance function is a function of both ¢ and w. Only variances were
required. A process of this type is said to be evolutionary.

Covariance stationary processes form a broad class of starlonary random pro-
cesses, processes in which the underlying probabilistic mechanisms up to the sec-
ond order joint density function do not change with the passage of time. If the
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nth order joint distribution function of some ensemble were obtained at times
t;,...,tm and compared with a similar joint distribution function obtained at later
times, t; + 7, ..., t, + 7 and found to be the same regardless of how high m is or
how large 7 was chosen, the process would be said to be strictly stationary. This is
a rather stringent condition for stationarity, if for no other reason than that it is sel-
dom feasible to measure joint statistics beyond second or third order. Covariance
stationarity, also called wide sense or second order stationarity, is more practical to
deal with. Only the second order joint distributions need be independent of time.
Many of the random signals involved in the study of biological processes are, or
can effectively be considered to be, covariance stationary. Unless there is possibil-
ity for confusion, henceforth we abbreviate covariance stationary to stationary.

In the stationary situation. it is possible to show (Davenport and Root 1958),
that the ensemble autocovariance function and the power spectrum of a random
process are related to each other by the Fourier transform pair:

o0 o
Cxx = / Cro(T) exp(—727f7) dT Cra(T) = / Ceo(f) exp(j2m f7) df
> = (1.66)

This relation was spoken of previously in terms of individual signals; here it is
stated in terms of the ensemble autocovariance function and power spectrum of a
process.

Some indication of how this relation arises can be obtained by representing the
zero mean random periodic signal z:(¢) and its delayed complex conjugate x* (t+7)
by their complex Fourier series. The Fourier coefficients X7 (n) and X7 (m) are
uncorrelated (Jenkins and Watts, 1968). That is, E[X7(n)X5(m)l = |Xp(n)|?
when m = n and 0 otherwise. The Fourier transform of E[x(t)z*(t + 7)], the acvf
of z(t), is then found to be given by the expression > %, . [ X7 (n) 126(f—k/T).
This is the power spectrum of the random periodic signal. Of particular interest is
the situation when 7 = 0. Here we have

Car(0) =Y Ceolf) df (1.67)

That is, the average power in the process is the sum of the powers of all the fre-
quency components in the spectrum. We can also define a cross power spectral
density in terms of the cross-covariance function. For this we have the Fourier
transform pair:

ny(f)Z/_ Cay(T) exp(—j2m f7) dr Cmy(f)Z/_ Coy(f) exp(y27 f7) df
(1.68)
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This is important in that it expresses a general relationship between processes
and not just particular specimens of the processes. Unfortunately, the interpretation
of the shape of a ccvf can be difficult and there is no simple interpretation to be
attached to the relation between c;,,(0) and the integral of the cross power spectral
density.

1.15 The Relationship between Ensemble and Time Statis-
tics

In biological work directed toward the study of dynamic processes, one is often re-
stricted to studying relatively few ensemble members and for only limited amounts
of time. A question then arises as to whether one may legitimately infer the sta-
tistical properties of the ensemble from the behavior of just a few, or even one,
of its members. This can be done if the stationary process satisfies what is called
the ergodic hypothesis. According to it the behavior of one member of an ergodic
process, if observed long enough, will be characteristic of all other members. An-
other way of stating this is that a stationary process is ergodic if time averaging of a
single specimen function is equivalent to averaging over the entire ensemble. The
frequency of occurrence of events in a single realization or specimen function con-
verges to the ensemble distribution. Furthermore, if a process is ergodic, there is
zero probability of getting “stuck” on a particular realization which does not have
the long run property. Let us consider the relationship between time and ensemble
statistics.

For a continuous random process the time average of a (real) specimen function
x(t) is given by

1T
< z(t) >= TlgI;OT/O x(t) dt (1.69)
and its autocovariance function by
1 T
<2t +7) >= lim = / 2(t) dt (1.70)
T—oo T 0

As indicated, the duration of the averaging interval 7' is made arbitrarily long.
The brackets on the left hand side of the equations indicate temporal averaging.
Ergodicity then implies that

< z(t) >= Efz(t)] (1.71)

<z(t)z(t 4+ 1) >= Czz(7) (1.72)
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Equations similar can be written for discrete random processes:

N-1
o BT 1 o
<a(t°A>= lim — ; z(t°A) (1.73)
and
| V-1
< z(t°A)x[(t°4+71°)A] >= e (7°A) = lim — Z z(t°A)x[(t°+7°)A](1.76)
N—oo N 40—0

(1.74)
The ergodicity relations (1.73) and (1.74) hold here as well. Eq. (1.76) differs from
Eq. (1.17) only in that it indicates a limiting process with /N becoming indefinitely
large. When N is finite and z () is a specimen function of an aperiodic process, Eq.
(1.76) is an estimate of the autocovariance function of the process. The goodness of
this estimate improves as N increases. Estimation problems are considered more
fully in Chapter 3.

Another property of ergodic processes is that the joint probability distributions
estimated from a single ensemble member approach those of the ensemble as the
length of time the specimen is observed increases. Thus a long and detailed enough
examination of one member of the ensemble can reveal all the statistical properties
of the process, not just the second order ones.

The problem in biology, and neurobiology in particular, is that it is difficult
to define at the outset of an investigation whether the process being studied is er-
godic. It is often taken for granted, but such a definition can require an extensive
examination of many specimen functions and even then there may be no clear-cut
indication of the process’s ergodicity. It is not possible to demonstrate conclusively
that a biological process is ergodic since to do so one needs to observe all members
of the ensemble for all time. At best we can only examine the available specimen
functions and infer from them that the process is ergodic. Stationarity and ergodic-
ity are often appealed to, sometimes implicitly, as justifications for studying but a
few specimen functions of a process. They are assumptions that need to be consid-
ered carefully. For example, it is clear that the EEG process observed at any time
by an electrode located anywhere on the scalp of a normal human is not ergodic
because there are numerous differences between the EEGs recorded from anterior
and posterior sites. The relative prevalence of the alpha rhythm is one particular
instance of these differences. On the other hand, if only a single recording location
is employed, then a particular specimen function of the EEG may quite possibly
arise from an ergodic process describing activity over an ensemble of individu-
als. This can be more precisely defined by restricting the conditions of observation
to normal alert adults. Similar illustrations can also be made for the spontaneous
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spike activity of individual neurons. When properly defined, their activity can be
described as arising from ergodic processes.

1.16 Mixtures of Signal and Noise

We have now come to the point where we must deal with mixtures of signals and
noise. To rephrase our original definition at the beginning of the chapter, a signal
is that constituent of the data which we are interested in and noise is whatever else
is present. It is inherent in the observation of electrophysiological phenomena that
some noise be present. What we are concerned with is the means to extract the
signal from the noise. And since one or both of these data constituents is random
in nature, it follows that the two must be separated by statistical means. Here we
give a brief introduction to this problem.

The simplest method for representing the structure of observed electrophysio-
logical data is as an additive mixture of signal and noise. If the observed data is
x(t), then

z(t) = s(t) + n(t)(1.77) (1.75)

where n(t) is the noise. It is in part biological and partly instrumentational in ori-
gin. Often in what follows, the signal s(t) will be synonymous with a response. In
the latter usage we refer to the electrophysiological response elicited by a stimulus.
The response process, as already noted, may be random in structure. We always
distinguish the signal or response from the net observed data =(t). The additive na-
ture of signal and noise is an assumption which, while valid in many situations, is
frequently open to question. The alternative assumption is that the signal and noise
interact in some nonlinear fashion, especially where the biological component of
n(t) is concerned.

The ease with which signal and noise can be separated depends in large part
upon how large the signal is with respect to the noise. Obviously, the stronger
the signal is, the easier it is to detect and analyze. When signal and noise are
comparable in strength, problems in the reliability of signal detection and analysis
procedures arise. Generally then, the goodness of signal analysis depends upon the
ratio of signal to noise strength, the signal-to-noise ratio (SNR). The higher this
ratio is, the more reliable are the estimates of signal structure. Several measures
of SNR are in use. We mention two of them. (a) RMS signal-to-RMS noise ra-
tio. When the signal component of the data originates from a continuous ongoing
process, its rms level is a useful characterization of its strength. In this situation
we measure SNR in terms of the rms values of signal and noise. The rms is a time
measure of the standard deviation of a process. It is the square root of average
power. (b) Peak signal-to-rms noise ratio. When the signal has a pulse or spikelike
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waveform of limited duration, the most distinguishing feature of the waveform is
its peak amplitude. In this case the convenient measure of SNR is the peak value
of the signal to the rms value of the noise.

1.17 Response Detection and Classification — Hypothesis
Testing

The randomness of neurobiological signals coupled with the background noise they
are immersed in causes signal analysis procedures to involve statistical decision
making in uncertain situations. For example, we may desire to ascertain whether
a particular stimulus is effective in evoking a response from the test subject. Does
the observed data contain a response, however obscure, or does it contain only
noise? A related problem is when we know that a stimulus evokes a response and
are interested in determining how changes in the stimulus parameters affect the
response. To what extent are the observed differences in the data due to stimulus
changes and to what extent to the interfering noise? The first of these problems is
the signal detection problem and the second the signal classification problem. The
signal here is the response to the stimulus. They possess considerable similarity
in their theoretical formulations and in their solutions. Detection involves only the
determination that the data do or do not have signals in them. Classification in-
volves a quantitative description of what is already accepted to be a response in the
data. This description is given in terms of such signal defining parameters as, for
example, the amplitude, frequency, and phase of a sine wave. These parameters
are estimated from the data with their goodness being affected by the amount of
noise present. From these estimates signal classification is performed. Different
segments of the data are judged to contain the same or different responses. ac-
cording to how similar or different the corresponding parameter estimates are. The
classification can involve as many groupings as one has reason to suspect exist in
the data, perhaps one for each type of stimulus employed.

Solutions to detection and classification problems involve the concepts of hy-
pothesis testing. In detection there are two mutually exclusive hypotheses: H1,
that a signal is present and H 0 that it is absent. In classification there are as many
mutually exclusive hypotheses as there are signal classes to distinguish among. In
either detection or classification the data are processed according to an algorithm
determined by the experimental design and by the properties of the signals and
noise, insofar as they are known. The algorithm yields a number whose magnitude
then determines which of the hypotheses to accept. Associated with the acceptance
or rejection of a hypothesis is the fact that decision errors are inevitable. Minimiza-
tion of these errors is in fact a critical ingredient that goes into the choice of the
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53 1.17. RESPONSE DETECTION AND CLASSIFICATION

data processing algorithm.

Two types of errors can occur in signal detection. If 1 is the hypothesis that
a signal is present and HO0 is the hypothesis that it is absent, there is the possibility
that H1 will be mistakenly accepted when HO is actually true, and another possi-
bility that H0 will be accepted when H1 is actually true. The first error is often
referred to as a false alarm (error of the first kind) and the second error as a false
dismissal (error of the second kind). Similar types of errors occur in the classifi-
cation problem. If there are three different signals to choose amongst, six different
misclassification errors are possible.

Let us illustrate a simple signal detection problem in terms of a three compo-
nent signal contained in noise. The components are its amplitudes at three consec-
utive sampling instants: s(t), s(¢+1), s(¢+2). The signal is present in background
noise, a combination of background biological activity and instrument noise The
noise is Gaussian with mean O and standard deviation . The signal and noise
combine additively to yield the response data, xz(t) = s(t) + n(t). Successive
samples of the noise are uncorrelated with one another. On the basis of these prop-
erties of the response data it is desired to construct a test to examine the hypothesis
that in any particular three-sample sequence, there is a signal of arbitrary structure
present in the data. As before, HO0 is the hypothesis that a signal is absent from the
data samples and H1 is the hypothesis that it is present. /0 is known as a simple
hypothesis because it is concerned with only one possible value for the response
vector in response space, here 0. H1, in contrast, is referred to as a composite hy-
pothesis because it is concerned with the signal parameters such as amplitude and
latency that have any non-zero value. So long as at least one of these parameters is
different from O a signal is present. It is possible to have H1, a simple hypothesis
stating, for example, that all sample values of the signal are unity. Usually, how-
ever, it is composite hypotheses covering a range of signal parameters that are of
greatest interest.

An example of this is the hypothesis that some stimulus-related response of
arbitrary waveshape is present in the data vector that we are examining. If Gaussian
noise alone is present and its samples at consecutive sample times are independent,
the data vector will tend to be found in a spherical region surrounding the origin.
We can, from the three-dimensional Gaussian distribution, compute the radius of
the sphere that a noise vector falls within some given percent of the time, say 99%.
This radius is Xp. Let us then set up the test that we will accept hypothesis H0
if the observed data vector is within that sphere. That is, we accept HO if the
observed data, samples of the additive combination of signal

22(0) + 22(1) + 2%(2) = Xo(1.78) (1.76)

and otherwise we accept H 1, the hypothesis that an arbitrary signal is present. In

DAD. Please do not duplicate or distribute without asking.



54 CHAPTER 1. BASIC SIGNAL PROCESSING
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Figure 1.8: Fig. 1.8. Amplitude probability densities Fy and P for the data ampli-
tude x, under hypothesis HO and H1. Xj is a threshold value for choosing HO or
H1 on the basis of experimental observation. X, is the threshold for a maximum
likelihood test.

choosing this and the threshold X, we have fixed at 1% the probability of false
alarm. The probability of false alarm is called the level of the test. The probability
of accepting H1 when it is true is called the power of the test. It is 1 minus the
false dismissal probability and depends upon the strength of the response relative
to the noise. Since the test is one involving the squares of the sample amplitudes,
the power of the test will be low when the signal energy is small compared to the
noise energy, and high when it is large, regardless of how it is apportioned among
the three samples.

Fig. 1.8 illustrates these definitions. In it are shown two amplitude probability
density functions of similar shape but differing means. They correspond to the
two hypotheses being tested by a signal measurement of the data x. The left-hand
density function is associated with hypothesis /0 and the other density function
with the hypothesis H1. In this case the strength of the signal is the difference
between the two means , 1 — ug. Let us somewhat arbitrarily select a decision
threshold value along the abscissa such that if a measurement of = yields a value
greater than Xy, hypothesis H1 will be accepted; if not H0 will be accepted. Since
the two probability densities overlap the threshold, some possibility of error is
clearly to be expected. If noise only is present and a measurement exceeds Xy an
error of the first kind is made. The probability of this happening is the level of the
test and is measured by the area under that part of the HO curve to the right of Xy.
If H1 is true and the measurement exceeds X;heta, H1 is correctly accepted. The
probability of this occurring is given by the area of the H1 curve to the right of
Xy, the power of the test. The area of the H1 curve to the left of Xy measures the
probability of making an error of the second kind, falsely rejecting H1.

While we have chosen an arbitrary threshold in this illustration, there is one
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particular location for it that is usually selected, in a test such as this, that point
where the two density curves intersect. Selection of the threshold at this point X,
results in a so-called maximum likelihood test. The value of the likelihood ratio
(see below) at X, is 1. Any measurement to the left of X, is more likely to have
resulted from a situation in which H0 was correct. But if it fell to the right of X,,,,
H1 is more likely to have been correct.

An optimum choice of boundaries in a multidimensional data space to use in
accepting one of the hypotheses can be determined by the use of what is called the
likelihood ratio. This is a ratio of two conditional probabilities. The one in the
numerator, P (X|H1), expresses the probability of having obtained the observed
data if H1 were true (signal present); the one in the denominator is the proba-
bility Py(x|H0) of having obtained the observed data if only noise were present.
Whenever the likelihood ratio equals or exceeds a preset threshold value, hypoth-
esis H1 is accepted; otherwise Hy is accepted. The two conditional probabilities
are referred to as likelihood functions. The reason is that a conditional probability
density is evaluated by inserting into it the observed data values. This yields an
expression in which the parameters of the density, its mean and variance, say, are
expressed as functions of the data. It is then possible to find values for the density
parameters that maximize the conditional probability.

The values so obtained are the maximum likelihood estimates, the parameter
values which are most likely to have produced the observed data. In the case of the
likelihood ratio, the hypotheses being tested are associated with particular values
for unknown parameters of the distribution. Then when the observed data values
are inserted into each of these likelihood functions, the one which is the more likely
will have the larger value. The value of the likelihood ratio can be computed for
each observed set of data points only if the form of the conditional probability
distributions governing the situation is known. In the particular three dimensional
example of signal detection that we have chosen, one involving the detection of
a signal in known Gaussian noise, the likelihood ratio is constant on the surface
of a sphere centered on the origin, as is shown in Fig. 1.9. A simpler case is
the situation in which we test the simple hypothesis that a three-sample signal is
absent against another simple hypothesis that the signal has a constant value A. In
this case the likelihood ratio is constant on a plane as shown in Fig. 1.9. The plane
is oriented perpendicularly to the line joining the origin to the point (A, A, A) and
its distance from the origin is determined by the choice of the level of the test.

When the decision involves choosing one of several possible signals in Gaus-
sian noise, the data space is partitioned into planes, hyperplanes if there are more
than three data samples per data vector, whose orientations and locations are de-
termined by the statistics of the noise and the parameters of the different signals.
The hyperplanes are the geometric embodiment of the likelihood ratio equations.
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Figure 1.9: Fig. 1.9. (a) A sphere has constant likelihood ratio for testing for
an arbitrary signal in noise. (b) A plane normal to the data vector (A, A, A) has
constant likelihood ratio in the test for the presence of that particular signal vector
in noise.
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Signals which vary from one another in less simple ways can also be separated by
data space partitions which are no longer hyperplanes but more complex surfaces.
Nonetheless, the likelihood ratio concept still applies. The acceptance of one hy-
pothesis in preference to the others is dictated by the location of the data vector in
the data space.

Hypothesis testing as described here is performed by the establishment of de-
cision rules with which to test the observed data. These rules are established by
knowledge of the properties of the anticipated signals and the interfering noise.
The more comprehensive is this knowledge, the more effective the tests can be.
But as long as there is noise to contend with, the decisions can never be error-free.
Once a decision rule has been adopted for a particular experiment, the error prob-
abilities are determined by the properties of the response and noise processes. It
is important to understand that the choice of the decision rule may be crucial to
the success or failure of an experiment, for there are good decision rules and bad.
A bad one will obviously have associated with it high probabilities of errors. But
there are also other aspects to the choice of decision rules to be concerned with.
The first is that there is generally an optimum decision rule for an experiment, one
which minimizes the error probabilities. No other means of processing the data
can improve upon this decision rule. In some cases, that optimum decision rule is
known or can be calculated and then relatively simply instrumented; in others, it
can be calculated and then instrumented only at great cost. When the latter is true,
it often leads to the search for suboptimm decision rules, rules which are almost as
good theoretically but have the advantage of being practical to employ. Biological
data processing problems are commonly solved by the application of ad hoc subop-
timum techniques. Great care is advised in considering the use of such techniques
for there are often no satisfactory methods for dealing with them analytically. To
prove their value in comparison with other techniques it may often be necessary
to test them with computer simulated data and trial analyses on pilot data. It often
turns out that what seemed on first inspection to be an effective analysis procedure
is no better than the method it is meant to replace and sometimes worse. The ap-
pealing simplicity of the suboptimum technique must be accompanied by verified
adequate performance if it is to be accepted as useful for data processing.
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Chapter 2

BASICS OF SIGNAL
PROCESSING

2.1 Introduction

The data arising from an electrophysiological experiment on the nervous system
initially consist of records in continuous analog form of stimulus events and the
responses that they give rise to. If these data are to be analyzed in more than a
qualitative way, digital computation techniques are usually called for. This means
that the analog data have first to be converted to digital, sampled form. Then the
full range of analysis techniques that have been developed to study dynamic pro-
cesses can be brought to bear. These include filtering, averaging, spectral analy-
sis, and covariance analysis. In this chapter we discuss first the properties of the
analog-to-digital conversion processes with particular regard to their effect on the
experimental data, and the subsequent tests the data are subjected to. Then we
move to a discussion of filtering operations, analog and digital, with emphasis on
the latter and how it fits into computer data analysis procedures. From time to time
we consider some of the hardware aspects of filtering since familiarity with them
is quite useful for a fuller comprehension of filtering procedures.

2.2 Analog-to-digital conversion

An analog-to-digital converter (ADC) converts a continuous signal into a sequence
of T- and A-discrete measurements. The two steps of time sampling and amplitude
quantizing are usually performed in a combined procedure. The ADC is first given
the command to sample by the computer and then holds the amplitude of this sam-
ple briefly while quantizing it. We illustrate the ADC in Fig. 2.1 as performing
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Figure 2.1: (a) Block diagram structure of an A-D converter. Sampling is initiated
periodically. Quantization of the sample is followed by coding it into digital for-
mat. When this is complete a read-out command causes delivery of the converted
signal to the data processor. (b) The signal s(¢) before sampling and its sampled
version s,(t). (c) The input-output relation for the quantizer. The step size is q.

its operations in the sequence indicated there. The organization of the converter is
not intended to describe a particular type of ADC, but to illustrate the function of
such a device. In addition, the data analysis problems we are concerned with do
not depend upon the detailed circuitry linking the computer to the ADC or upon
the structural features of the converter itself. The sampled version of the signal is
x4(t), a sequence of maintained voltage levels lasting the duration between sam-
pling times, Fig. 2.1(b). The amplitude of each level is the signal amplitude at
the sampling instant °A. In what follows, we assume A to be unity so that t°A
can be replaced by the integer valued time variable ¢t°. Sampling devices are often
referred to as sample-and-hold circuits because of their ability to hold the sam-
pled value without significant decay until quantization has been completed—a time
duration that is often considerably shorter than the interval between samples.

In a number of experimental situations in which a response to a stimulus is
being analyzed, the instrumentation is organized so that the stimulator is triggered
by the same pulse that initiates A-D conversion of the data. This insures that there
will be no jitter (random variation in time) or asynchrony between the onset of
the stimulus and the data sampling instants. That is, sampling always occurs at
fixed delays from stimulus onset. If, on the other hand, the stimulator is driven
independently of the ADC and notifies that device when to initiate sampling, jitter
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of the sampling instants can occur and tend to result in some temporal smearing
of the digitized data. The jitter effect will be small when the cycle time of the
computer is small compared with the sampling interval. Here we ignore the effects
of jitter in A-D conversion.

The sampled signal x,(t) is then quantized to yield an output z,(¢°) which can
take on only a limited number of, usually, uniformly spaced values. The input-
output relationship for the quantizer is shown in Fig. 1(c). The quantization step
is g volts in amplitude. The output is O as long as the input is greater than 0 and
no larger than g; it is ¢ as long as the input is greater than ¢ and no larger than 2q
and so on. In equation form, the input-output relationship is, at integral values of
t =1t°(with A =1)

Mg,  forz.(t°) > Mq=Q
xq(t°) = mq  mg<z(t°) < (m+1)g, |m|<M (2.1
—Mg, 2q(1%) < —Mgq=-Q

The maximum and minimum voltage levels that can be handled without satu-
ration are () and —() and the total number of levels 2/ that the output signal can
take on is usually some integer power L of 2:

oM = 2k (2.2)

The degree of precision of an A-D conversion is referred to in terms of the number
of bits in the output word of the converter. A 10-bit converter will quantize voltages
between -1 and +1 Volt into one of 1024 levels each of whose magnitude is 1.952
mV.

The final step in the conversion is to code x4(t°) (only the values of z, at
the sampling times are important) into a form acceptable for use by the computer.
Most often this means that z,(¢°), whether positive or negative, is represented in
binary q form, L binary digits being adequate for this. Typically, one coded output
line is assigned to each binary digit and the value of the voltage on this line at the
read-out time indicates whether that binary digit is a 1 or a O. The time for both
sampling and readout are determined by a clock contained within the computer.
“Interrupt” features of the computer assure that the incoming data are accepted
after each quantization has been performed.

2.3 Quantization Noise

Each conversion has associated with it a discrepancy between the quantized and
the true value of the signal. It is useful to consider this error as a form of noise,
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called quantizing noise, z,(t°A). We can then write
xq(t°A) = z(t°A) + 24(t°A) (2.3)

(2.3) 24 is limited in absolute value to 1/2 the size of the quantizing step ¢. (The
properties of quantizing noise in the uppermost and lowermost quantizing levels
are different but do not substantially alter this analysis.) We assume the incoming
signal to be a random one that is band limited to F' = 1/2 such that A = 1. This
means that sampling is done at the Nyquist rate. We also assume that the signal’s
amplitude is large compared to the size of a quantizing step but small enough not
to produce peak value limiting at any time in the converter. Under these reason-
able assumptions the following statements hold reasonably well: (1) the quantizing
error of a sample is uncorrelated with that of its sequential neighbors; (2) the prob-
ability density function for the error z, of a sample is uniformly distributed over
the interval O to ¢q. That is, it is equally likely that the magnitude of the error be
anywhere in this range. From assumption (2) and the quantization rule of Eq. (2.1),
the mean value of the quantizing noise is ¢/2. This is a bias term.

q/2 q2
var(zy] = / zg dz = — (2.4)
—q/2 12

The lack of correlation between sample errors implies that the autocovariance
function for the noise is given by

L for 70 = 0
c, . (%) = 127 2.5
(1) { 0 otherwise (25)

The power spectrum of the noise, excluding the dc bias term, is flat to F' = 1/2.
To see this, suppose the data consist of N samples of the signal and that we assume
the combination of signal and noise to be periodic with period T'= NA = N. The
substitution of Eq. (2.5) into Eq. (1.23) results in spectral terms C., ., (n), which
are all equal and independent of n. This is because c,.,(7°) is different from 0
only when 7¢ = O. Thus the quantizing noise is equally divided among all the
N/2 frequency components between 0 and N/2:

2
q N
Cozg = Tgryr 0Sn<T (2.6)
The ADC converter thus adds noise of its own to the incoming signal, a noise
whose covariance and spectral properties are determined solely by the sampling
rate and the fineness of quantization. Although quantizing noise has the appearance

of being random, it is best to remember that this is not entirely so. To illustrate this
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point, suppose the incoming signal were a repetitive wave synchronized exactly to
some multiple of the sampling period. Samples taken of the waveform during each
period at the same time relative to the beginning of a period will always produce the
same quantizing error and this would not be removable by the process of averaging
over successive waveform repetitions. However, as soon as some background noise
is added to the fixed waveform, the situation changes. The quantizing noise then
takes on many of the characteristics of random noise. In a sense, the uncorrelated
quantizing noise is induced into the quantized signal whenever the incoming signal
has a fluctuating random component. Thus, if the input noise bandwidth were very
low relative to 1/2, the quantizing noise would still exhibit the flat power spectrum
indicated by Eq. (2.6). This induced noise can only be removed by numerical or
digital filtering of the digital data subsequent to the A-D conversion operation, a
topic covered later in this chapter. Since there are many situations in which one is
interested in signal peaks which may be small compared to the largest one present,
the existence of quantizing noise must not be ignored, for it tends to make the small
peaks less detectable. It can, for example, become an important factor when the
biological noise contains a significant amount of lowfrequency components giving
rise to what is referred to as baseline drift in the received data. When this occurs,
it is common practice to reduce the amplification of the signal so as to prevent too
frequent saturation of the signal amplifiers or peak limiting in the ADC. It is then
quite possible that lesser peaks in the signal will be no larger than a few quantizing
intervals, making the quantizing noise a factor of importance.

The fineness of A-D quantization is of importance in still another way. It affects
the ability to reconstruct from the quantized output data, the amplitude probability
distribution of the input data. This issue is somewhat different from that of detect-
ing by response averaging a weak but constant response in a background of noise
(Chapter 4). There, one is not interested in determining the nature of the amplitude
distribution of the data. Here, detection of such subtleties in the data is the desider-
atum, with response detection being secondary. To find how well this can be done,
it is necessary to know how fine, relative to the peaks in the amplitude distribution,
the quantization steps must be. When a large number of quantized samples of the
input signal are available, the answer, as Tou (1959) has shown, can be arrived
at by considering the signal amplitude distribution as itself a waveform which is
to be represented by a set of uniformly spaced samples along the amplitude axis.
In this approach, the amplitude axis is analgous to the time axis of conventional
waveform sampling. One can then apply the sampling theorem that states that for
perfect reconstruction of a band limited wave whose highest frequency is F', sam-
pling should be performed at a rate no lower than 2F/sec. In practice, when the
experimenter examines the sampled version of the waveform on an oscilloscope,
the Nyquist rate is usually inadequate to permit satisfactory visual reconstruction of
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the waveform. Sampling rates for this purpose should be no lower than 3F'/sec to
5F/sec. Although probability distributions of amplitude are not truly band limited
in terms of their Fourier transforms (called characteristic functions), it is possible
to arrive at a convenient rule-of-thumb in determining what an adequate quantiza-
tion step or sampling interval should be. Thus, suppose the narrowest peak in the
amplitude probability distribution of the data is normal in shape, with variance o2.
The Fourier transform of this distribution is also Gaussian and has more than 99%
of its area confined to “frequencies” less than 1/30. Considering this to be an ad-
equate approximation to the “bandwidth” of the distribution, simple computations
indicate the size of the quantizing step should then be very nearly o. Note that
though quantizing noise is present, its variance, o2/12, is small compared to the
variance of the smallest peak in the input distribution. Our rule can now be stated
in terms of the distance D between points three standard deviations away from the
narrowest peak: a sampling width D/6 volts is adequate to represent peaks in the
amplitude distribution which are D volts or more in width. The result holds for
overlapping peaks as long as no component peak is narrower than D. If the peaks
are sharper, the rule stated here will produce some distortion of their shapes which
will be further contaminated by quantization noise. Sharp peaks therefore require
some decrease in the quantization step.

2.4 Multiplexing: monitoring data sources simultaneously

Multiplexing is the process whereby several data sources have their information
transmitted to the data processor over the same channel. Here the channel is the
ADC and the multiplexing is performed by a process of switching the input of
the ADC from one signal source to another. The rate at which the switching is
performed and the choice of the source to be selected are determined by the data
processor which accepts the data from the converter output. Both are constrained,
of course, by the data handling capabilities built into the converter. When multi-
plexing is performed, an additional amount of time is required to perform a data
conversion. The additional time arises because the process of switching the data
converter from one source to another introduces a brief electrical transient into the
signal and it is necessary to wait for this transient to subside before performing a
conversion. The multiplexing time can increase the total conversion time by about
10%. Multiplexing of different data sources is performed most commonly at a
uniform rate proceeding from source 1, to source 2, to source 3, etc., and back to
source 1 in a recurrent, cyclic fashion. This is the mode of operation when the data
from the different sources are signals of comparable bandwidths and whose tem-
poral fluctuations are judged to be of equal interest and importance. When equal
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sharing of the ADC by the different sources occurs, the minimum period between
samples of anyone source is increased by a factor equal to the total number of mul-
tiplexed channels. As a consequence, the maximum bandwidth which each signal
can have without introducing spectral aliasing is 1/2M A where M is the number of
equally multiplexed sources and [/M A is the effective sampling rate. In addition
to being certain that the effective sampling rate is adequate to preserve signal struc-
ture, one must also consider the effects of noise in the input data and quantization
noise. Ideally, prior to A-D conversion, filtering should be performed to remove
from the input data all frequency components higher than 1/2A. If this is not done,
the higher frequency noise components in the data will, after digitizing, be aliased
with the lower frequency ones. Aliasing means that signal components at frequen-
cies greater than 1/2 of the sampling rate will be misinterpreted as components at
frequencies less than half the sampling rate. This falsifies the interpretation of sig-
nal structure made from the sampled data. Aliasing is discussed more thoroughly
in Chapter 3. The net result is a decrease in the signalto- noise ratio of the dig-
itized data. Suppose, for example, that the sampling rate of the ADC were 1000
samples/sec and that five data channels were being multiplexed. Suppose also that
the prefilter had a high frequency cutoff at 500 Hz corresponding to the resolvable
bandwidth if only one channel were being digitized. Now, five data sources are
being multiplexed. The effective sampling rate of each source is 200/sec and the
corresponding resolvable bandwidth is 100 Hz. Even if the response components
of the input data have bandwidths less than 100 Hz, all the instrument noise be-
tween 100 Hz and the filter cutoff at 500 Hz will be aliased into the spectral region
below 100 Hz. producing a degradation of the quantized data from the ADC. This
degradation can be eliminated only by reducing the input data bandwidth to 100
Hz. For this reason it is highly desirable when background noise is an important
factor to use a prefilter whose cutoff frequency is 1/2 the effective sampling rate.

The total quantizing noise remains unchanged during multiplexing since the
quantizing error in each conversion is the same. However, the bandwidth of the
digitized output has been reduced so that the spectral intensity of the quantizing
noise is increased by the factor M. Filtering prior to A-D conversion cannot reduce
this. As basic communications theory shows, this means that when sampling is
done at the Nyquist rate, narrow bandwidth data are more affected by quantization
noise than are broad bandwidth data.

In some situations, the monitored data sources have widely different band-
widths making it possible to sample the narrow bandwidth signals less frequently
than the broad. This often results in a nonuniform rate of sampling of the broader
bandwidth signals, there being occasional intervals in which they are not sampled.
Usually no serious deterioration in the data analysis results. Infrequent interrup-
tions in sampling can be further minimized by post A-D conversion digital filtering,
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discussed later in this chapter, which has the effect of interpolating the missed data
points in addition to smoothing the data.

If one considers only the spectral properties of the data sources and the sam-
pling rate of the ADC, the problems associated with multiplexing are straightfor-
ward. However, another factor, the size of the computer storage area, needs also
to be considered when real time data analysis is being performed. As discussed
previously, in single channel A-D conversion all real-time data processors have a
limited memory capacity in terms of the number of registers available to store data.
When multiplexing is employed, these registers are parceled out to the different
data sources so that over a given observation epoch, it is never possible to attain
the same temporal resolution in each of the several multiplexed channels as it is
with just one. The decision to resort to multiplexing must take this into account.

2.5 Data filtering

The operation of data filtering is one in which certain attributes of the data are se-
lected for preservation in preference to others which are “filtered out.” To design
a satisfactory filtering device or program we must have some knowledge of the
structure of both the signal and the noise. In the classical approach to filtering,
the spectral components of the signal and noise are of major interest and filters are
designed to select or “pass” some spectral components, those containing primar-
ily signal information, and reject or ”’stop” others, those consisting mostly of noise.
While any filtering operation can be described in terms of how it treats the different
spectral components of the data, we shall see that this is not the only satisfactory
way of dealing with filtration. Prior to the advent of computers, the filtering was
concerned primarily with continuous electrical signals and was performed by net-
works consisting of passive elements (resistors, capacitors, inductors) and active
devices (vacuum tubes, transistors). A network of this type is referred to as an
analog filter. It operates on continuous data and yields a continuous filtered out-
put. With the advent of the digital computer, it was recognized that analog filters
performed computation on their input data which could be carried out equally well
and sometimes better by computations on digitized sampled data without the need
for constructing specific analog filter devices. In the following sections we discuss
some basic attributes of filtering principally from the standpoint of the digital filter
but, inasmuch as the continuous analog filter is still of great value in biological data
processing, we also consider it to some extent.
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2.6 The digital filter

The history of the digitized version of a signal x(¢) over T" seconds is represented
by N samples of it from t° = 0 to t° = (N — 1)A. They form the set {z(t°A)}.
Once again we assume that the signal is band limited to ' = 1/2 and that A = 1.
A filter, digital or otherwise, is a device with input z:(¢) and output r(t). If the
device is digital, it stores a sequence of the past samples of the signal x(¢°) in
digitized form and operates upon them according to a filtering rule or algorithm to
yield the output sequence, r(¢°). If the rule does not vary with time, the filter is
a time invariant one and if, in addition, the rule involves only the computation of
weighted sums of the stored data samples, the filter is linear. The output of a linear,
time invariant digital filter can be written as

N-1

r(t°) = Y h(r)a(t’ — 7°)(2.7) 2.7)

to=0

In this chapter we are concerned mainly with such filters. Though linearity
and time invariance are confining restrictions to put upon a filter’s properties, the
variety of filtering tasks that can be performed by linear filters is sufficiently rich
to satisfy many of our data processing requirements. Linear filtration is easy to
understand and perform in both its digital and analog forms. However, it does have
deficiencies that limit its ability to deal with time varying processes, and some of
them will be made apparent in the discussion.

As Eq. (2.7) indicates, the linear filter consists of a set of NV fixed weighting
terms {h(7°)}. h(7°) multiplies the 7°th most recent sample of the quantized
signal and the products when summed yield the filter output. As each new sample
of the signal is acquired, the filtered output has to be recomputed, since each of
the past samples is now one sampling period older and must be multiplied by the
weighting factor corresponding to its age.

An understanding of the nature of the operation of a digital filter can be ob-
tained by a specific example. Let us consider that the sampled z(t), in addition
to arising from a band limited signal, is band limited and repetitive with integer
valued period 7'. Its Fourier series representation, valid at the sample times, is then

N/2—1

r(t?) = 3 Xr(n)exp

n=—N/2

j2mnt°

(2.8)

We demonstrate how any one of the Fourier components can be filtered from the
signal.
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2.6.1 Filtering of the constant component

If the filter output is to be X1 (0), it will have this value regardless of the value of
time at which the output is examined. That is, for any integer value of ¢ the output
of a filter operating upion M consecutive signal samples is

M-1
r(t°) = Xp(0) = Y h(r®)z(t* — 7°) (2.9)

Now, since z(t) is periodic and band-limited, we need only to have M =N =T
equally spaced samples represent the signal. Then Eq.XX becomes

N-1
r(t°) = Xp(0) = > A(rO)z(t* — 7°) (2.10)

What we seek is the set of values that the 4(7°) should have to make this equation
an identity. Replacing each sampled value z:(7°) by its Fourier series representa-
tion, as given in Eq. (2.8), we have

ply Net 2mn(t° — 7°)
r(t°) = X7(0) = ; hro) S Xr(n) expjT 2.11)

n=—N/2

Interchanging the order of summation gives

27 Nt — —2mjnT°
r(t%) = Z X7 (n)exp ?V Z h(7°) exp + (2.12)

(2.12) If all the h(7°) are equal to a constant value h, the inner summation becomes

N-1 .
—j2mnT° Nh(0), n=EkN
h(0 exp ———— = 2.13

( ); P™N { 0 otherwise 2.13)

k is O or any other integer. Then, substituting this result into Eq. (2.12) gives
r(t°) = X7p(0)Nh(0) (2.14)

If h(0) = 1/N, we obtain the desired identity (t°) = X7(0). This means
that the digital filter which extracts X7 (0), the average value of a periodic x(t),
operates on the N most recent signal samples of z(t), adding them and dividing
by N. This particular filter is called a digital integrator since it simply numerically
integrates the previous signal sample values. This result holds regardless of the
value of A.
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2.6.2 Filtering the m'" frequency component

We now wish to filter from the same band limited, periodic signal one of its har-
monic components, in particular the component having the frequency m/T =
m/N. This component is expressed by the sum of two terms, either

Ar(m) cos(2rmt/N) + Br(m) sin(2rmt/N) (2.15)
or its identical counterpart
Xr(m)exp(2mjmt/N) + Xr(—m) exp(—2mjmt/N) (2.16)

We desire to specify a digital filter whose output at each sample time is the same as
the amplitude of the m*" component of the signal, Eq. (2.16), at that time. Again,
because of periodicity only /N samples of the signal are necessary:

N-1
r(t°) = Z h(7%)z(t°—7°) = Xp(m) exp(j2mmt/N)+Xr(m) exp(—j2rmt/N)
T7°=0

2.17)

The problem is to find if there is a set of values of A(7°) which makes this

relation an identity. To do this, we proceed as we did previously when determining
the average value filter. We obtain the equation (which is identical to Eq. (2.12) )

N/2—1

. N—1 .
2mnt° —j2mnT°
r(t%) = E Xr(n)exp J ~ E h(7°) exp JT (2.18)
n=—N/2 T7°=0

Inspection of this equation reveals that for it to be identical to Eq. (2.16) we need

to have Nl
— —j2mnT° 1, n=+m
h(T°) exp ——F— = 2.19
TZO (") exp N { 0 otherwise (19)
(2.19)
Let us employ some intuition and guess the form of the solution for A (7°) :
2 2 ° 1 2 © —j2 °
h(r°) = o8 WZ;T =5 [exp‘7 W]?T exp J ;{mT } (2.20)
We substitute this into the left-hand side of Eq. (2.19) and find that
1 Ni [exp jmrom—n) | —j2mrt(m + n)] [ on= i'(m + kn)
N 2= N N 0 otherwise
(2.21)
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(2.21) just as we needed. Since the signal is band limited, only the terms n = +m

are of interest. Substitution of Eq. (2.20) into Eq. (2.18) gives
72mmt° —j2mmt°
N

r(t°) = Xr(m) exp + X7(m) exp (2.22)
the desired result. The right-hand side may also be expressed in terms of Eq. (2.15).
We have thus obtained the digital filter which operates upon the N most recent
samples of the signal to yield at its output the sampled sequence representing the
mth component of the signal. The values of A7 (m) and By (m) can be obtained
from the output of the filter, Eq. (2.22), by measuring both the peak value of the

output and the time it is 0 and by employing the well-known identity

Ar(m)cos(2mrmt/N) + Bp(m)sin(2rmt/N) =

A2 (m) + B2(m)]Y2 cos 2mmit /N + arctan]Ag(m)/Bp(m)] )

(2.23)

X7 (m) and xp(—m) can be obtained if desired by using Eq. (1.12). Now
that we have seen that it is possible to design a digital filter that extracts the mth
component of a periodic signal without error, it is possible to demonstrate, though
we do not do it here, that any combination of components of such a signal can be
filtered, by a single compound filter that combines the properties of the individual
component filters. Furthermore, this combined filter can weigh the contribution of
the individual components to the output. Thus, suppose we wish to filter the ¢** and
m!" component of the signal x(t) and weight them V' (¢) and V' (m) respectively.

The filter output will then be

r(t?) =V(9)[Xr(q) exp(—j2mqt®/N) + Xp(—q) exp(j2mqt®/N)]
+ V(m)[Xr(m)exp(—j2mmt’/N) + Xp(—m) exp(j2mrmt°/N)]
(2.24)

Reference to Eq. (2.20) shows that this response can be obtained from a filter
whose response is defined by

1) =D fexp(j2mqr?/N) + exp(—j2mar®/N)

+ V(m)[exp(j2rmtau’/N) + exp(—j2mm7°/N)]

(2.25)

(2.25)

The output of this filter contains only the ¢** and m** components of x(t) and
in the desired strengths. The result can be generalized to a filter operating upon all
the frequency components of the signal.
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2.7 Impulse response of a digital filter

A convenient way to represent the response of a digital filter is by means of its unit

sample response or impulse response h(t°), its response to a unit amplitude signal

sample or discrete time impulse at t° = O. All other signal samples, before and

after, are O. As an example, consider the impulse response of a filter which weights

equally each of the previous M samples of a signal. This response is
o

h(t"):{ Ko 0= s M-l (2.26)

0, elsewhere

(2.26)

A unit amplitude sample which appeared at the filter input less than M samples
ago yields a filter output whose present value is K. If a unit sample at the filter
input has occurred more than M samples in the past, then the present value of
the output is O. Later in the chapter we shall see that the discrete time impulse
response described here is closely related to the continuous time impulse response
of an analog filter.

When the impulse response of a filter is known, its response to any input signal
can be calculated in a straightforward way by taking advantage of the linearity
properties of the filter. Thus, to obtain the response at t° = 0, h(l) weighs the
signal amplitude at t° = —1, h(2) weights the signal amplitude at t° = —2, and so
on with all the weighted signal amplitudes then being summed to obtain

r(0) =Y h(r%)a(—7°) (2.27)

If we are interested in the value of the response at time ¢, the same procedure
follows, each term in the sum being the product of x(t° — 7°) and h(7°). Thus,

r(r%) = > h(r%)a(t® — 7°) (2.28)

T7°=0

This is the same as Eq. (2.9) if we consider only the first N terms. What we did
in the preceding sections, therefore, was to design a digital filter by specifying its
impulse response. The computational procedure described in Eq. (2.28) is referred
to as convolution of the impulse response with the signal. It is often symbolized
mathematically by the notation

r(t%) = h(t°) * z(t°) (2.29)
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Figure 2.2: The convolution of a five sample filter with a sampled signal. The filter
impulse response is shown in the middle trace with time reversed. The convolution
computation is indicated at time t = 8. The continuous lines represent the band
limited functions corresponding to the samples.

The convolution procedure is illustrated in Fig. 2.2 for a filter which has five terms
in its impulse response. To make the procedure more visually comprehensible, we
have reversed or folded over the time axis for the plot of A(t"). It tends to bring
out the nature of the filter weighting procedure more clearly.

2.8 Spectral relations between filter input and output—the
discrete fourier transform principles of neurobiologi-
cal signal analysis

The relationship linking a filter’s output to its input and its impulse response by
the convolution process can also be expressed as a relationship between the corre-
sponding Fourier coefficients. To see this, we again consider a periodic input signal
that has period 7' = N and is bandwidth limited to frequencies less than 1/2. The
signal at sample time t° — 70 can be represented, as before, by the Fourier series

Nl j2mn(t° — 19)
x(t° —71°) = Z xr(n)exp —N (2.30)

n=—N/2

This signal is passed through a digital filter with unit sample response h(7°). The
output of the filter is given by Eq. (2.28) which has its own Fourier series expan-
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sion, also with integer period N.

NE | 2Tnt°
r(t%) = _Z]:V/Q Re(n) exp ¥ 2.31)

Note that the continuous counterpart r(¢) of the filter output (¢°) must also
be band limited to the same frequency band since the filtering operation only mod-
ifies the amplitude and phase of the signal components that are present; it never
introduces new frequencies. We need consider only filter responses which are less
than or equal to the signal period since in the previous sections we have seen that
no additional information is gained by making the memory longer than that. If the
filter memory is less than the duration of the signal, this can be handled by setting
to zero the values of h(7°) corresponding to 7° > N.

Let us now substitute Eq. (2.30) into Eq. (2.28). We obtain, after changing the
upper limit in Eq. (2.28)to N — 1,

N/2—1

N-1 . o_ .
r(t%) = Z h(7°) Z xr(n) expw (2.32)

N
7°=0 n=—N/2
(2.32) We now interchange the order of the summations to obtain
N/2-1

j2mn(t°) = —j2mn(7°)
r(t%) = Z xr(n)exp — Z h(7°) exp N (2.33)
n=—N/2 7°=0

(2.33) and then write the inner summation as

—j27n70)

N (2.34)

N-1
Hy(n) = > h(7°)exp

T7°=0

(2.34) The right hand side of Eq. (2.34) is referred to as the discrete Fourier trans-
form of the impulse response, h(7°). Hy(n) and h(7°) are further related by the
inverse discrete Fourier transform:

Nl j2mn (%)
h(r°%) = — Z Hpy(n)exp — (2.35)

n=—N/2

(2.35) We call Hy(n) the transfer function or system function of the filter. When
Eq. (2.35) is substituted into Eq. (2.33) and the result compared to Eq. (2.31), the
Fourier coefficients of the filter’s output are seen to be given by

Rp(n) = Hy(n)Xr(n) (2.36)
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(2.36) Clearly, the output never has frequency components where the signal has
none so that if the input is band limited, so is the output, and to the same bandwidth
or less. The properties of the direct and inverse Fourier transform will be discussed
more thoroughly in Chapter 3.

2.9 Filtering aperiodic signals

2.9.1 A. Short duration signals

Digital filtering has been discussed in terms of periodic signals that persist indef-
initely. Under these circumstances a filter whose memory can store the waveform
samples of a single period of a band limited signal will have an output which is
also periodic and whose Fourier components are related, as shown in the previous
sections, to those of the input signal by the weighting factors built into the filter.
Often, however, we are confronted with signals that are transitory in nature, having
a definite beginning and end. More often than not, in neurobiology, such signals
occur in a background of noise and are of great interest. We would like therefore
to build a filter which, essentially, passes th transitory signal but suppresses the
noisy background. An example of such a situation arises when we wish to devote
attention to alpha bursts in an ongoing EEG. The bursts occur infrequently and
persist for relatively short periods of time while the EEG process is itself aperi-
odic. It persists indefinitely and may in this situation be considered noise. It also
differs substantially from the alpha burst in its frequency content, and so a filtering
operation on a sampled representation of the data can help to suppress the noise
with respect to the alpha burst. Another example of a transitory potential is the ac-
tion potential of an individual neuron. This is also often observed in a background
of noise arising both from unrelated electrical activity of the nervous system and
from the microelectrode and its associated amplifier. Here again, because the noise
differs substantially in its frequency content from the signal, filtering can serve to
enhance the size of the signal relative to the noise. In either example the goal is to
preserve the structure of the signal and eliminate, as much as possible, the noise.
However, a necessary consequence of filtering short duration signals is that there
always occurs a certain amount of alteration in the structure of the signal, even
when sampling is performed without distortion and at the Nyquist rate. The alter-
ation is ascribable to the memory of the filter. Because of it, the filter’s response
to a brief signal has a longer onset than the signal and, likewise, a longer decay.
The filter may be said to smear the signal out in time. This temporal smearing
increases with the length of the filter’s memory. Let us illustrate this with a digital
filter designed to extract a brief burst of a 10 H z sine wave from background noise,
an idealization of an alpha burst in the EEG. The filter memory consists of 20 sam-
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Figure 2.3: (a) The impulse response (dots) of a 10 Hz digital filter with a 20
sample memory two cycles in duration. (b) The response of this filter to a burst of
four cycles of a 10 Hz sine wave. Note the response onset and decay. In both (a)
and (b) a continuous line is drawn through the dots to aid visualization.

ples taken at a rate of 100/sec. The filter’s unit sample response illustrated in Fig.
2.3(a) is two cycles of a

sampled sine wave. If the filter were operating upon a periodic signal whose
period corresponded to the memory duration of the filter, 0.2sec, 10H z would
correspond to the second harmonic, n = 2, of the 0.2sec interval. The filter passes
this component of a periodic signal and rejects all the other harmonically related
ones. The filter’s output when the actual s ignal is a burst of four cycle s of a 10
Hz sine wave is shown in Fig.2. 3(b). It can be seen that the filter output exhibits
transient behavior over the first two cycles of the response and then is transient-free
for the next two cycles. This is followed by a transient decay to zero output for the
time lasting from the end of the burst until 0.2 sec later, the duration of the filter’s
memory. Note that the original four-cycle burst has been stretched by the filter into
one of six cycles duration with slower onsets and offsets than were exhibited by
the original signal.

2.9.2 B. maintained signals

Let us move from the transient, short duration signals to signals which last indefi-
nitely. Periodic signals, as previously pointed out, are of this class and we showed
how we could analyze them completely with a restricted number of samples. For
a band limited signal of T seconds and bandwidth 1/2, N = T" samples are neces-
sary for this. Suppose we now consider the filter memory to be limited to these N
samples and let the period of the signal gradually increase beyond 71" seconds to T’
seconds while still maintaining its bandwidth limitation. It is clear, first of all, that
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one result of lengthening the period is that the signal acquires an increased number
of signal components equally spaced between 0 and 1/2 Hz, T”/2 to be exact, and
that these are not harmonically related to the original fundamental frequency 1/7
(except when the extended period is a multiple of 7). In the limit as 7" becomes
indefinitely large, the signal becomes aperiodic and has its frequency components
spread throughout the continuum of frequencies between 0 and 1/2. If we exam-
ine how the N sample filter operates upon an arbitrary frequency f = 1/7” in
this frequency region, we find that it passes frequencies other than those which are
integral multiples of the fundamental frequency 1/7". To see this, let us consider
a filter designed to pass only the mth harmonic of a periodic signal with period
N =T. We know from Eq. (2.20) that its impulse response is given by

h(r°) = (2/N) cos(2rm7°/N) (2.37)

(2.37) Let the input to this filter be the single frequency signal () = cos 27 ft.
Then the output of the filter is, by Eq. (2.7)

2 X 27mmre
r(t°) = — coS cos[2m f(t° — 1° 2.38
(t) = 5 D_ cos =5 cos[2m f(t — 7°)] (2.38)
T7°=0

(2.38) This equation is easiest to deal with when complex notation is used for the
cosine terms. We can then simplify the right hand side in a straightforward manner
that is, however, somewhat tedious. The simplification makes use of the identity
arising from the summation of a geometric series,

play sinTtN
Z exp j2mgr = exp[jm(N — 1)9]%9 (2.39)
— sinmg
(2.39) The result is that the output of the filter is found to be
sin(rN(f —m/N)) N-1 m
%) = 2 S
r(t”) Nsin(n(f —m/N)) cos2m | fE+ 2 / N (2.40)
sin(7N(f +m/N)) N-1 m '
2 t+ —— —
Nsin(r(f £ m/N)) 2T |t 5/ + g

(2.40) In this formidable looking equation it is the first term that is of major im-
portance since it makes the principal contribution to the filter output in most cir-
cumstances. This can be seen by referring to our previously discussed 10 Hz filter.
That filter has a 20-sample impulse response (A = .01sec) that covers two cycles
of a 10 Hz wave. Thus m = 2 and N = 20. To evaluate the filter’s performance
let us plot the expressions

sin(mN(f —m/N)) and sin(rN(f +m/N))
Nsin(n(f —m/N)) Nsin(n(f +m/N))

(2.41)
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Figure 2.4: The two expressions of Eq. (2.41) plotted as a function of frequency.
They show how the amplitudes of the two response components of Eq. (2.40) vary
with signal frequency.

(2.41) as a function of frequency f for the chosen values of m and N. This is done
in Fig. 2.4. (The phase shift terms in Eq. (2.40) are of minor importance.) There
are several important properties to note:

1. 1. The filter has unity transmission at the single frequency f = m/N =
1/10 (This corresponds to a data frequency of m/NA =10 Hz.)

2. 2. The filter has no transmission (infinite attenuation) at other frequency
multiples of [/N = 1/20.

3. 3. There is significant transmission of other signal frequencies that are lo-
cated in the frequency band between (m — [) /N and (m + 1) /N, here 1/20
and 3/20. (This corresponds to data frequencies of 5 and 15 Hz.)

4. 4. There exist other frequency bands on either side of this central band or
main lobe where signal components can also be passed though with signif-
icant attenuation. These bands are often referred to as the side lobes of the
filter. Their size is an important consideration in the design of filters that are
used in spectral analysis.

The second term defining the filter response in Eq. (2.40) represents a contri-
bution to the output effect that arises * from the fact that a cosine wave is the sum
of two complex frequency terms: exp j2rrft and exp(-j2rrft) that are equal in mag-
nitude. The filter’s cosine unit sample response has the same representation. Note
that when the signal frequency is in the filter’s main lobe, (m/N) - f is small while
(m/N) + f tends to be large. This means, as already noted, that the contribution of
the second term to the filter output is usually negligible except in filters that are
designed to pass frequencies near O.

Suppose now that the memory of the filter of Fig. 3 were increased in duration
by a factor of 5. Its unit sample response would then be 10 cycles of a 10 Hz
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sine wave. We then have M = 100 and m = 10 (since we are interested in
that harmonic of the fundamental period). If we examine expression (2.41) we
find that it still has unit amplitude at f = m /N but that now the zero transmission
frequencies defining the main lobe are at f = 9/100 and 11/100 (corresponding to
data frequencies of 9 and 11 Hz). We have thus narrowed the pass band of the filter
by a factor of 5. From this it can be surmised that there is an inverse relationship
between the length of a filter’s unit sample response (at a given sample rate) and its
bandwidth. This general relationship between temporal and frequency properties
always needs to be kept in mind when data filtering is employed.

2.10 Data smoothing by digital filtering

Let us now consider a slightly different filtering situation. Here the incoming data
to the sampler is bandwidth limited to 1/2 Hz by a preamplifier and sampling is
performed at a I/sec rate. We know, however, that the bandwidth of the response
we are interested in is somewhat less than 1/2 Hz. Without adjustment of either
the preamplifier or the sampling rate, we would like to design a digital filter that
passes only the lower frequencies present in the response and rejects the higher fre-
quencies as much as possible. We would like to do this using as little memory as
possible and without introducing phase distortion which alters the response wave-
form. A filter which does this is called a smoothing filter and it has broadly useful
properties. Its smoothing action results from its weighted averaging of a usually
short sequence of consecutive signal samples.

A simple smoothing filter that computes the average of three consecutive sam-
ples of the signal has its response given by

2
r(t?) = Y () 2t +1-7°) (2.42)

T7°=0

(2.42)

This way of representing the signal samples simplifies the analysis. t° 4 1 is
the most recent sample time and 7(¢°) is the smoothed version of the signal one
second ago . For simplicity let 2:(¢) have period 7" >> 1. We then substitute its
complex Fourier series representation for it and interchange the order of summation
to obtain

. 2 .
2mnt° —72mn(1° —1
r(t°) = E Xrp(n)exp J E h(7%) exp ‘7](\7) (2.43)
n=—N/2 7°=0
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Rel.
Resp.
Hy(n)

174 172 !

Figure 2.5: The frequency response Hpy(n) of the three component filter with
weights 1/4, 1/2, 1/4. The frequency axis is f, = n/N.

(2.43 ) When the inner sum is expanded into its three terms, we have
h(0) exp(—j2mn/N) + h(1) + h(2) exp(j27n/N) = Hy(n) (2.44)

(2.44) See Egs. (2.34) - (2.36) and the accompanying text. Hy(n) is a spectral
component weighting factor, possibly complex, for each term in the Fourier series
representation for r(¢°):

N/2—1

r(t°) = > Xr(n)Hy(n)exp
n=—N/2

j2mnt
N

(2.45)

(2.45) Now let us choose the values of the h(7°) so that (a) there is unity gain at
0 frequency and (b), the frequency component in z(t) at f = 1/2 is completely
removed from 7(t°). A simple filter which meets these constraints has h(l) =
1/2,h(0) = h(2) = 1/4, and, from Eq. (2.44)

Hy(n) = %[1 + cos(2mn/N)] (2.46)

(2.46)

This weighting filter Hy(n) is plotted in Fig. 2.5 as a function of f = n/N.
The nth frequency component in 7(¢°) is Hy(n) times the nth component in x(t).
Note that the weighting factor is always real and positive so that none of the fre-
quency components in r(tO) is different in phase from those of the original signal.
Also, the low frequency components near 0 are passed almost without attenua-
tion and the higher frequency components, those above 1/4, are highly attenuated,
meaning that if there is noise present and it is uniformly distributed in the spec-
trum, a large fraction of it has been removed without adversely affecting the low
frequencies in the signal waveform. The noise reducing effects can be exemplified
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by referring to the statistics of the original noise. If its bandwidth were 1/2 and its
variance unity, the variance of the noise at the filter output would be

var[r(t°)] = (1/4)* 4+ (1/2)* + (1/4)* = 3/8 (2.47)

(2.47) This reduction in noise has been obtained without changing the bandwidth
of the preamplifier preceding the digital filter. It is also important to remember that
if the sampling rate had been reduced to be commensurate with the bandwidth of
the response component of the data, there would have been no change in the vari-
ance of the noise per output sample. Instead, the noise at the output would have had
its bandwidth compressed (by aliasing of the higher frequency components) to pro-
duce increased contamination in the spectral region, occupied by the signal. Thus,
when signal bandwidth is considerably less than noise bandwidth, digital filtering
can yield significant reductions in noise, including that introduced by quantization,
that would not be obtainable by alterations in sampling rate.

Although the preceding discussion was based upon z(¢) being periodic, the
results obtained also apply to stochastic band limited signals in general. The re-
sponse properties of the filter are such as to inherently pass low frequencies and
attenuate high frequencies regardless of the signal structure.

The digital filter described here is one example of a type encountered often in
problems dealing with signal smoothing (Hamming, 1973). A certain amount of
improvement in removing the higher frequencies can be obtained by increasing the
filter memory to 5, 7, 9, etc., samples. Such filters can be designed to have a variety
of transfer functions with different filtering characteristics, to have no phase shift,
to pass the 0 frequency component without loss, and to attenuate the 1/2 Hz com-
ponent completely. Such filters can be quite useful, but an adequate discussion of
them is beyond the scope of this book. The interested reader is referred to Oppen-
heim and Schafer (1975). We note, however, that as the memory and complexity
of the filter increases, the amount of time required to perform the computations
also increases. When the data are being processed in real time, the amount of time
available to compute each filtered data value can be no greater than the length of the
sampling interval minus the time required to sample and perform A/D conversion.
The computation time required for any given filter will depend upon the speed and
structure of the computer employed. For these reasons, there can be no hard and
fast formula relating sampling rate to allowable filter characteristics. In addition to
being used for spectral filtering of a response from the background noise contained
in the data, digital filters may at times be useful for interpolating purposes. This
use arises in situations in which the data occasionally contain brief spikelike tran-
sients that are perhaps artifactual in origin and unrelated to the response of interest.
In this case an interpolating filter can act to minimize the effect of the transients by
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discarding the data sample amplitude at the time of the transient. An example of a
three-sample interpolating filter is one whose weighting coefficients are 1/2, 0, 1/2.
Postexperimental use of this filter upon those data points where the transients are
suspected can be of value. But it is not a filter to be used with abandon. The reason
is that its transfer function, evaluated according to the methods employed above, is

Hpy(n) = cos(2mn/N) (2.48)

(2.48) Note that there is complete attenuation of frequencies near 1/4 Hz and that
all frequency components above that are phase shifted by 180° at the filter output.
This can produce severe distortion in the filtered version of the data. A five-sample
interpolating filter with weighting coefficients 1/4, 1/4, 0, 1/4, 1/4 can reduce this
distortion somewhat but it also produces 180° phase shifts over half the frequency
band and weights negatively the frequency components near f = 1/2.

Digital filters have been applied with good success to spectral analysis of ran-
dom processes such as the EEG. In this type of application which is discussed in
more detail in Chapter 3, the spectral characteristics of the filter are of equal im-
portance to its temporal response properties. The filter is spoken of as providing
a spectral window through which to view the random process. The spectral shape
of this window is one of the factors that determine how well one can estimate the
spectrum of the random process from a sequence of its sampled values. There are
a number of window filters which have been proposed and used for this type of
analysis. Their predominant use is off-line with recorded data. This means that the
filters are not constrained to operate upon a small temporal segment of the data and
can have substantially large memories in order to compute the estimates necessary
to a spectral analysis.

2.11 Digital filters with feedback-recursive filters

The filters discussed above have used the N most recent samples of the signal.
Their finite impulse response means that they possess no memory of data that oc-
curred more than /N samples ago. This situation can be modified without increasing
the physical size of memory of the filter by the use of data feedback from the filter’s
output. A filter employing feedback is often called a recursive filter. It turns out to
have an infinitely long response to a unit sample. An example is given in Fig. 2.6.
Here the filter has a single storage element or shift register, ;. The output,
r(t?), of the register is the value its input, e(¢°), had at the previous sampling time.
The input to the register is the weighted sum of the signal and the register output:

e(t°) = z(t°) + Kr(t°) (2.49)
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Rel.
Resp.
Hy (n)

Figure 2.6: Fig. 2.6. A digital recursive filter with a single storage element D;.
The output of the storage element is equal to its input one time interval earlier.

(2.49) where K is the weighting factor applied to the output of the storage element.
The output of the filter is just

r(t°) = e(t® —1) (2.50)
(2.50) If we substitute for e(t° — 1) in the above expression:
r(t’) =x(t° — 1)+ Kr(t° - 1) (2.51)

(2.51) We then substitute e(t° — 2) for 7(t° — 1) using Eq. (2.50) and substitute for
e(t® — 2) using Eq. (2.49). We find that

r(t’) = 2(t” — 1) + Ka(t* - 2) + K*r(t° - 2) (2.52)

(2.52) Continuing on in this manner for earlier and earlier values of r, we see that

(e e}

r0) =Y .- (2.53)

T7°=0

(2.53) The impulse response of the filter yielding this response is

o

h(r°) = K7 (2.54)

(2.54) The single shift register filter is thus theoretically equivalent to a filter storing
all the past signal samples each of which it weights according to the power of K
that corresponds to the age of the sample. Great flexibility can be obtained in
feedback filters by using several shift registers in various feedback configurations.
The theoretical response of such configurations can be obtained without undue
difficulty , although we shall not do so here. For more details, see Oppenheim and
Schafer (1975). In practice there are distinct limitations to the amount of memory
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realizable with such a filter. Suppose, for example, we let K = 1/2. As the age
of the sample increases, the value of the corresponding power of K decreases until
it becomes so small that the weighted sample is not representable in a computer
by a fixed point number. The smaller the size of the computer word, the smaller
is the number of past samples that can be usefully represented. There are also
problems encountered in the round-off errors of the products resulting from the
multiplication by K called for in Eq. (2.49) and in the time requirements to perform
them. These increase if floating point multiplication is employed to circumvent the
limitations imposed by fixed point arithmetic. It can be seen that such problems
require careful consideration when one is designing a feedback digital filter to meet
a given response specification.

2.12 The linear analog filter

The continuous analog filter preceded the digital in its application to signal anal-
ysis and its use remains widespread, the growth in the use of the digital filtration
notwithstanding. The reason is that solid state technology has made analog filters
easy to design and apply, usually at a modest cost, to specific filtering problems.
The concepts of the spectrum and impulse response of a filter and the relationship
between them were first understood in terms of the linear, time-invariant analog
filter. These were later adapted and extended to the linear, time-invariant digital
filter.

The most common biological instrumentation application of the analog filter
is in preamplifiers and amplifiers which link the biological preparation to the data
analyzing system. As such, it produces the requisite signal amplification and some
preliminary filtering, though at the unavoidable cost of adding instrument noise to
the biological signal. Amplification is produced by the active power-producing el-
ements. Filtering is produced by electrical circuits composed of passive resistors,
capacitors, and, occasionally, inductors acting in conjunction with active ampli-
fying elements. The configuration of these circuits and the relative sizes of the
elements in them determine the characteristics of the filter. When the elements in-
volved are linear, i.e., when their parameters are independent of the voltage across
them or the current passing through them, the filters are referred to as linear. The
relationship between the output and input of a linear filter is described by a linear
ordinary differential equation with constant coefficients. An example of a linear fil-
ter is the low-pass filter illustrated in Fig. 2.7. The triangular symbol is commonly
employed to indicate an active circuit element, usually an operational amplifier,
which amplifies the incoming signal by a factor of K and inverts its phase. If we
employ (a) Kirchhoff’s rule that the sum of the currents entering a circuit junction
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Figure 2.7: Fig. 2.7. A linear low-pass filter constructed from an operational
amplifier, a resistor R, and a capacitor c.

is equal to the currents leaving, (b) Ohm’s law, and (c) the current-voltage relation
for a capacitor, i = C'dv/dt, and if we assume that there is no current entering the
input terminals of the amplifier, it is a simple matter to show that the differential
equation for this configuration is given by

[K/(K + 1)RC(d/dt)r(t) + (1) K)r(t) = z(t) (2.55)

(2.55) The characteristics of this filter are obtained by solving the differential equa-
tion. As will be shown, this filter is a lowpass filter because it tends to pass the low
frequency components of the data with little attenuation while, at the same time, it
attenuates the high frequency components.

2.13 The laplace transform, the filter transfer function,
and impulse response

In order to obtain the solution of the linear differential equation and, thereby, the
explicit response of the filter to any arbitrary input signal, the most useful mathe-
matical technique to employ is that of the Laplace transform. The Laplace trans-
form when applied to a suitable function of time f(¢) yields a new function F'(s)
defined by the transform equation

F(s) = /OOO f(t) exp(—st)dt (2.56)

(2.56)

There are many valuable properties of this transform that show up in the trans-
formed function F'(s). Among them is the fact that the nth time derivative of f(¢)
turns out to be s"F'(s). [We ignore here consideration of the initial condition of

DAD. Please do not duplicate or distribute without asking.



2.13. LAPLACE TRANSFORM, FILTER TRANSFER FUNCTION, IMPULSE
85 RESPONSE

f(t) and its derivatives at ¢ = 0.] This means that the Laplace transform of a linear
ordinary differential equation for f(¢) yields an algebraic equation in s and F'(s).
Thus the Laplace transform of Eq. (2.55) is

[K/(K + )]RC s R(s) + (I/K)R(s) = X(s) 2.57)

(2.57) where R(s) and X (s) are Laplace transforms of r(¢) and x(t) respectively.
The solution for R(s) in terms of X (s) is

X(s)

R(s) = [K/(K + )]RCs + (I/K)

(2.58)

(2.58) This equation can then be inverse transformed to yield the temporal response
r(t) as given by the inverse Laplace transform

o0

X(s) B
[K/(K +l)]Rcs+(z/K)’"(t) = /_ N R(S) exp stds (2.59)

R(s) =

(2.58)

Tables of the Laplace transform and its inverse have been compiled for the
more common functions of t and s and they can often be used to advantage. See
Abramowitz and Stegun (1965) for example. In practice, the application of Laplace
transforms can be involved and direct solution of the differential equation may
be preferable. One way to do this is by computer simulation methods, digital or
analog. We shall not consider this further.

The Laplace variable s is a complex one with real and imaginary parts: s =
0+ jw = o + j2mw f. Among other things this means that the integration in Eq.
(2.59) is in the complex plane. It should also be noticed that if o = 0, the Laplace
transform resembles the Fourier transform closely. The resemblance is more than
coincidental. The two are actually intimately related and this is important in deriv-
ing the properties of filters. A more complete discussion of the Laplace transform
is beyond the scope of this book but can be found in many standard texts, Spiegel
(1965) and Milsum (1966) for example. Simon (1972) provides an introduction to
the Laplace transform at a more basic level.

If we know nothing about the properties of a filter except that it is linear, an
examination of the relationship between its input signal and its output can reveal
the filter’s exact mathematical structure. In this regard, a particularly important
input to the filter is the unit impulse, §(¢ — T"). This is an infinitesimally short pulse
occurring at time 7 whose amplitude is inversely proportional to its duration so that
its area is 1:

/ TSt — )it =1 (2.60)
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(2.60) This impulse, or delta function, is also called the Dirac delta function. One
of its important properties is that the time integral of its product with another time
function f(t) yields the value of that other function at time T:

/_ Tt — ) f(t)dt = f(7) 2.61)

(2.60) The Laplace transform of §(¢ — 7) is easily shown by Eq. (2.56) to be
exp(—s7). Note that when 7 = 0, this becomes unity.

If an impulse is applied at ¢ = 0 to the input of a filter, the filter output at time
t is, appropriately enough, its impulse response, h(t). If the impulse is applied
at time 7, the response of the filter at time ¢ to this delayed impulse is h(t — 7).
Suppose we are interested in the output of the filter at time ¢ to some arbitrary
input z(t). We may determine this response by the following line of reasoning.
Any signal can be considered to be composed of a steady stream of short pulses
AT sec in duration, each of whose strength (area) at time ¢t — 7, 7 sec earlier than ¢,
is x(t — 7) A7. The response of the filter 7 sec after such a pulse has been delivered
is approximately x (¢ — 7)h(7)A7. Now, the linearity property of the filter assures
us that at any time ¢ the response of the filter to the entire past signal is the sum
of its responses to the individual impulses of which that signal is composed. If we
pass to the limiting situation by letting A7, the pulse duration, become very small,
we have

r(t) = /OOO x(t — T)h(T)dr (2.62)

(2.62)

Note that the integration is over the past histor9 of the signal. The response
of the filter h(7) is thus 0 when 7 is negative. This means that the filter cannot
anticipate what its input will be in the future and this is a property of all real filters.
It is not to be confused with the fact that, under suitable circumstances, a properly
designed filter may predict future values of the signal on the basis of the signal’s
past behavior. That is another matter. Equation (2.62) shows that the output of
the filter is the convolution of the input with the impulse response of the filter.
This is the analog version of Eq. (2.28) obtained for the digital filter. Using the
convolution notation of Eq. (2.29) we have

r(t) = h(t) * x(t) (2.63)

(2.63) If we take the Laplace or Fourier transform of both sides of Eq. (2.62) we
find that

R(f) = H(f)X(f) (2.64)
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(2.64) (It is not necessary here to distinguish between the two, beyond noting that
the Laplace transform is evaluated for s = j27 f.) This is an analog counterpart of
Eq. (2.36). An important facet of of these analog filter relationships is that there are
no bandwidth restrictions on the incoming signal and as a result no aliasing prob-
lems to be concerned with. The relations are independent of both signal bandwidth
and filter impulse response.

Let us now return to the filter described by the differential equation, Eq. (2.55).
The solution of this equation indicates that the impulse response of the filter is
given by

(2.65)

{1

(2.65)

The quantity RC whose dimension in sec is the time constant of the filter. This
filter is the analog of the digital feedback filter whose impulse response was given
in Eq. (2.54). That this is so can be seen by considering h(l) as obtained from Eq.
(2.65).

h(l) = exp(—l/RC) = K (2.66)

(2.66)
Then, for integer values t

h(t) = exp(—t/RC) = K* (2.67)

(2.67) which is the same as Eq. (2.54). Thus while the digital filter weights the past
of the signal exponentially at the sample times ¢, the continuous analog filter does
the same type of weighting for all values of time into the infinite past. In this sense
the digital filter is a sampled version of the continuous one. At the sample times,
it performs indistinguishably from the continuous filter provided the bandwidth of
its input signal is properly limited.

The Fourier or Laplace transform (with s = 527 f) of Eq. (2.65) is the transfer
function of the filter and is given by

RC

H(f)= 15 25 fRO |H(f)|exp(j0) (2.68)

(2.68) Note that if the incoming signal is a unit amplitude sine wave of frequency
f, the output of the filter will be another sine wave of the same frequency:

RC

r(t) = |H(f)|sin(2nft + 0) = W

sin(2rft+0)  (2.69)
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Figure 2.8: Fig. 2.8. Bode plots for the low pass filter of Eq. (2.69). RC = 1. The
frequency axis is logarithmic. The upper diagram plots the gain in dB; the lower
diagram, the phase shift in radians. The 3 dB cutoff frequency is at f = 1 Hz.

(2.69) The amplitude of the sine wave is the amplitude of H(f) at the signal fre-
quency f, and there is a shift 6 in phase of the output relative to the input. In this
case, the phase shift is given by

0 = — arctan(2w fRC') (2.70)

(2.70)

The filter H(f) has a pass band and a stop band. The pass band is defined
as that band of frequencies in which a sine wave signal is attenuated by less than
sqrt2. This amount of attenuation in decibels is 20log1o\/§ = —3dB. The band
of frequencies where attenuation is greater than 3 dB is defined as the stop band.
The frequency marking the boundary between pass and stop bands is the cutoff
frequency, here the 3 dB cutoff frequency. (Other attenuation levels are sometimes
used to define the limits of a pass bana.) At the 3 dB cutoff frequency, the phase
shift produced by the filter is 45 or 7/4 radians. In the simple low-pass RC filter,
the maximum phase shift occurs at very high frequencies and is —90. The charac-
teristics of filter performance can be summarized in the pair of curves called Bode
plots (see Fig. 2.8),

which relate its amplitude and phase properties to frequency. The upper curve
plots 20log;o|H(f)|, the decibel value of H(f), as a function of frequency while
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the lower plots the phase angle . RC'is taken to be 1/27. The decibel gain mea-
sure is preferred because when filters are cascaded, both their logarithmic gains
and their phase shifts add. [This is true as long as the individual filter stages are
properly isolated from one another (buffered) so that they do not interact.] As can
be seen, the slope of the log gain curve in the region somewhat above f = 1/2x
is nearly linear. Thus, a simple low-pass, single time constant RC filter has a gain
slope of -20 dB/decade of frequency. That is, each time the frequency increases
tenfold, the gain is reduced one-tenth. Equivalently, each time the frequency dou-
bles, the gain halves, a 6 dB change in gain per octave frequency change. This is
characteristic of a filter described by a linear first order differential equation.

It is possible to increase the rate of attenuation of a filter in the stop band to -40
dB/decade by designing a filter represented by a second order differential equation,
to -60 dB/ decade by a third order filter, etc. As mentioned above, one simple way
of achieving the higher cutoff rates is to cascade filter units or stages. However,
there are now far more elegant techniques for designing inexpensive filters that
have sharp cutoff properties. The more prominent types of filters are of the Butter-
worth and Chebychev types. The principles behind their designs can be found in
standard texts on filter design. See Brown et al. (1973) and the Federal Telephone
and Radio Handbook (1963), for example.

Besides the low-pass filter, there are two other general types of filters which
find wide application in studying dynamic processes. These are the high-pass and
the bandpass filter. The former is characterized by being able to pass high frequen-
cies with little or no attenuation while substantially attenuating low frequencies.
It has a low frequency cutoff and a log gain-versusfrequency curve which is es-
sentially a mirror image of the highpass filter. So is its phase-versus-frequency
characteristic. High-pass filters are typically used to remove slow-wave activity
from single unit records. They are also used to remove from the data spurious very
low frequency components as might arise from electrode instabilities or from the
amplifier components themselves. The bandpass filter, on the other hand, is char-
acterized by being able to pass only a limited band of frequencies located between
low and high cutoff frequencies. The attenuated frequencies are in the stop bands
located beyond these cutoff frequencies. Filters of this type are employed when
there is a more or less narrow range of frequencies of primary interest in the signal
data as is the case, for example, in studying the alpha frequency component of the
EEG.

The inverse of a bandpass filter is a stop band filter. One common application
of it is to remove power line interference from recordings of EEG data. Although
these filters have a very narrow stop band, their phase characteristics inherently in-
troduce phase distortion of frequency components of the signal which may be rel-
atively remote from the stop band. An inevitable consequence is that there is some
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waveform distortion of the filbered signal. Thus, one should use such remedial
filters with caution and only when other techniques for interference suppression at
the source have failed.

2.14 The operational amplifier

Our brief discussion of the linear analog filter has presented only its essential prop-
erties in outline. Since the linear analog filter is so widespread in the prefiltering
operations that precede A-D conversion, it is useful also to consider the analog
filter from a more instrumentational point of view. Here we consider some of the
properties of the active amplifying element that forms the heart of the analog filter,
the operational amplifier. This device has simplified linear filter design in many
instances to little more than cookbook complexity. Consequently an understand-
ing of its basic properties will help the neurobiologist in applying these recipes to
his own requirements. The operational amplifier’s name derives from its original
use in analog computers where it was developed to help perform the mathematical
operations of summation, integration, and differentiation. These are accomplished
by incorporating the amplifier into feedback networks which take advantage of the
amplifier’s most important property, extremely high gain or amplification. The ap-
plications of the operational amplifier have by now been greatly diversified so that
it finds extensive use wherever analog filtering applications occur. At present, the
most common configuration of the operational amplifier is the differential config-
uration shown in Fig. 2.7. The output of the amplifier is —K times the voltage
difference between the inverting (-) and the noninverting (+) inputs. Practical val-
ues for K range from 10,000 to considerably higher. Another basic property of
the operational amplifier is that its input terminals draw negligible current from
the electrical networks connected to them. In Fig. 2.9 the operational amplifier is
shown in a four resistor network which makes it function as a differential amplifier
with respect to the two signal sources e; and eg
Some simple network relations show how this comes about. First,

eo = K(Ae) = —K(eq — €p)
The voltages e, and e, are derivable from the signals e; and ey and the output

eo assuming that the resistances of these sources are very small compared to the
network resistors. Thus,

1 Rp
o= €)—— _ 2.71
¢ €0R1+RF+€1R1+RF 71
(2.72)
Rg
= eg—n-T 2.72
ep = €2 Rt Ro (2.72)
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Figure 2.9: Fig. 2.9. An operational amplifier configured to function as a differ-
ential amplifier. The voltages at the inverting and non-inverting inputs are e, and
ep, respectively. R is the feedback resistor.

(2.73) Substituting Eqgs. (2.72) and (2.73) into Eq. (2.71) and simplifying some-
what, gives

K Rr Rq

eo(l+ 5———)=—K(e —e 2.73
o R1+RF) ( 1R1+RF 2R2+RG) ( )
(2.74)
We now divide both sides by the coefficient of ep and simplify it a little further
—(Ry + Rp) Rp R¢g
ey = e —e 2.74
0 [(1+K/K]R1+(RF/K)( "Ri + Rp 2R2+RG) 274)
(2.75) Since K is very large, Eq. (2.75) can be accurately approximated by
—(Ri+R R R
o= Tt Br), _Rr G (2.75)

R "RitRr “Rs+ Ro

(2.76) The differential relationship can now be obtained by setting Rz = R and
Ro = Rq. Then
—Rp
Ry
This is the defining relation for the differential amplifier. As long as K is large,
the amplification is determined by the sizes of the resistors in the network and
not by the gain of the operational amplifier. Changes in the sizes of Ry and Rg
from those selected here weight the contribution of eo differently from that of e;.
Note, however that the output is always in phase with es and in phase opposition
to e;. Moderate variations in /<, as inspection of Eq. (2.75) will indicate, do not
materially alter the differential operation. This arises from the negative feedback
from the output to the inverting input via Rp.

€y — (61 — 62) (2.76)
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When a number of inputs are to be added in phase with one another and am-
plified, they may all be brought to the inverting input terminal of the amplifier of
Fig. 2.9 through their own input resistors. The inverting input is thus also referred
to as the summing junction. The contribution of each input to the amplifier output
is in proportion to the Ohmic value of the resistor connecting it to the summing
junction. Thus if e; , e3 and e4 are connected to the summing junction by resistors
R;, Rs and R4, the amplifier output will be proportional to R;e; + R3es + Ryeq. It
should also be noted that if the non-inverting input is connected directly to ground,
the summing junction is at ”virtual ground” potential in that its potential is the out-
put voltage divided by the gain of the amplifier. Under normal circumstances the
summing junction is never more than one or two millivolts from ground.

Another important use of the operational amplifier is as a buffer between signal
and load . In this type of use, the amplifier is used to furnish more power to a
load than the signal source can . The amplifier isolates the load from the signal
and thereby prevents the load from distorting the signal waveform properties and
from interfering with the properties of a biological preparation. Because of its
low output impedance the buffer amplifier tends to suppress transient artifactual
potentials which may be generated in the load. This can be the case where the
load is an ADC. The switching transients which occur in these devices may, unless
properly guarded against, corrupt the signal being digitized. A more complete
discussion of the characteristics of operational amplifiers may be found in Brown
et ai. (1973).

2.15 The amplitude comparator

It is common in the examination of single and multiple unit activities to have to
assign an occurrence time or epoch to each individual waveform, be it a spike from
a neuron or some particular feature of an EEG wave. The major difficulty in occur-
rence time measurement arises when the events are waveforms occurring amidst
other activity such as background noise. Error-free estimation of the epoch is im-
possible; but the epochs of events whose waveforms are larger in amplitude than
those of the background noise can be measured quite accurately with an ampli-
tude comparator, a device which operates upon the instantaneous amplitude of the
observed signal.

The output of the comparator changes rapidly from one voltage level to another
when the amplitude of its input signal increases through some reference threshold
level. The reverse transition in output occurs when the signal amplitude decreases
through this threshold. Thus, both these time instants can be marked by the com-
parator. Many of the common amplitude comparators are based on the bistable

DAD. Please do not duplicate or distribute without asking.



93 2.15. THE AMPLITUDE COMPARATOR

8y

|

| Oy
1

! I\

i ‘\/_
| i

! 1

1 1

1

I

I

i

i

1

r(t)
t

Figure 2.10: Fig. 2.10. Above, the input to a Schmitt trigger circuit. au is the
upward going threshold; ed’ the downward. The difference between the two, here
exaggerated, is the hysteresis. Below, the output of the circuit. The pulse exists as
long as the input exceeds au and has not gone below ed.

s(t)

Schmitt trigger circuit and are further specialized so that they generate a brief pulse
only at the time of the upward threshold crossing. Bistable means that the circuit
has two stable states, one when the input is below threshold, th other when the
input exceeds the threshold. The transition time is very rapid. In Fig. 2.10 is
shown the action of such an amplitude comparator on a brief, pulse-like signal.
The downward threshold crossing time is disregarded when only onset times are of
interest. Also, comparators of the bistable Schmitt trigger type exhibit a hysteresis
phenomenon: the threshold for a downward crossing is at a different lower level
from the upward threshold. The hysteresis may be minimized by careful design
and adjustment, but it can never be eliminated. Any measurement which requires
accurate determination of upward and downward crossings of the same threshold
must therefore employ amplitude comparators which effectively remove hysteresis.

The epoch time estimated by an amplitude comparator is subject to errors in-
troduced by the presence of noise in the data and by inherent fluctuations in the
observed spike waveform itself.

As the noise and waveform fluctuations increase, errors increase. The temporal
distribution of the epoch estimate of a spike is dependent upon the properties of the
noise and upon the spike shape and how it fluctuates from spike to spike.

Amplitude comparators can also be used to separate pulse-like waveforms of
different amplitudes that are mixed together in the electrode signal. This often
occurs in extracellular micro-electrode records. The activity of different neurons
observed by the electrode will differ most obviously in the amplitudes of the action
potentials from the different units. If the action potential peaks from each of these
units occupy non-overlapping ranges in amplitude, the spikes from each unit can be
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filtered from the others by the use of paired amplitude comparators, often referred
to as an amplitude window circuit. One comparator is set at a low level A; and
the other at a higher level A;. The amplitude interval between them is the window
and covers the range of amplitude variation exhibited by one unit. If the peak of a
spike falls in the A; to Ao window, its waveform will ascend and descend through
A; without passing through A, in the intervening interval. Spikes which are larger
than A in amplitude will pass through both the A; and As levels, and those which
are too low will pass through neither. The decision on whether a peak falls within
the selected window must await the recrossing of the lower level. An output pulse
is generated by the discriminator only if there has been no crossing of A, between
the upward and downward crossings of A;. The delay is generally not significant.

A pair of amplitude comparators can be used to filter out each spike amplitude
range of interest. The window width of each pair is set experimentally to pass
only those spikes thought to be associated with a particular single unit. Each pair
operates independently of the others and their ranges must not overlap. In many
experimental situations, however, overlap does exist in the amplitude ranges of the
spikes generated by the different units. This is due to the intrinsic variability of the
spike amplitudes themselves, as observed by the electrode, and to the presence of
background noise. The overlap greatly reduces the utility of the filtering scheme
since spikes arising from one neuron can be improperly attributed to another. A
noise spike can also be mistakenly classified as arising from a unit and occasionally,
the combination of noise and spike activity can cause a unit spike to be missed
entirely. These standard misclassification errors can degrade the analysis of unit
and inter-unit activity with a severity that depends upon the frequency of their
occurrence. Except in exceptional circumstances, three units with non-overlapping
amplitude ranges seem to be the practical limit that can be satisfactorily filtered
by amplitude comparators. More powerful techniques are available for filtering
spikes from one another on the basis of their waveform shapes. These techniques
are discussed in Chapter 7.

2.16 Time-varying and nonlinear filters

With the exception of the amplitude comparator, the filters that have been discussed
are linear. That is, the output is a weighted sum of the input signal, its time deriva-
tives and integrals. The properties of a particular linear filter are determined by
the assignment of weight to each of these terms. Once assigned, these weights are
not changed during a filtering procedure. The filter is thus both linear and time
invariant. These filters are usually referred to simply as linear filters in contrast
to time-varying linear filters. We do the same here. The mathematics describing
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the properties of the filter are those of linear difference equations, where computer
operations on sampled signals are concerned, or upon linear differential equations,
where operations on the original continuous signals are concerned. One of the key
facts to keep in mind with respect to linear filters is that their best application is to
situations in which the signal and the background noise are stationary. In certain
instances of this type, mainly where the noise is Gaussian, it has been shown that a
linear filter is the best filter that can be employed to extract response information.
However, few of the neurological signals of interest can be said to fit completely the
description of stationarity; nor is biological noise purely Gaussian. Linear filters
perform data processing that is less than optimum in these situations. More satis-
factory solutions to the problems encountered in dealing with non-stationarity and
non-Gaussian processes require the application of a variety of filtering operations
which may be either time-varying, nonlinear, or both.

A time-varying linear filter is one whose weights (or coefficients in the defin-
ing filter differential equation) may be systematically altered as a function of time
according to some prescribed recipe. This is done in the case of adaptive or learn-
ing filters. These can be used to achieve better response estimates in the situation
in which either the response or the noise properties vary with time. A nonlinear
filter is one that performs operations which cannot be described by linear differ-
ential or difference equations. The amplitude comparator is an example of such a
filter. Products, quotients, and powers of derivatives and integrals are among those
that may be encountered in nonlinear filtration; so are logical operations. A mo-
ment’s consideration will indicate that the class of nonlinear filters is vastly greater
than that of linear filters. Nonlinear filtering operations are implicitly involved in
a number of statistical data processing techniques that have been applied to re-
sponse estimation. The consideration of these tests from the filtering point of view
can have conceptual advantages for it helps provide a concise description of how
signal data are processed.
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Chapter 3

POWER SPECTRA AND
COVARIANCE FUNCTIONS

3.1 Introduction

In the introductory chapter we pointed out the usefulness of covariance functions
and spectral representations as ways of describing continuous data that are mix-
tures of signal and noise. These two ways of representing continuous dynamic
processes lead to powerful methods of signal analysis. However, we indicated that
the analysis procedures are generally performed not upon specimen functions of the
original continuous processes, processes that are essentially infinite in duration, but
upon finite segments of their sampled versions. The results and conclusions drawn
from these analyses are then used to draw inferences about the original processes:
the wave form of a response, its spectrum, its correlation with another response,
its dependence upon a stimulus parameter, etc. The question is, how good are
these inferences? Although we made some effort to point out the legitimacy of
the procedures under many circumstances of practical interest, it is important that
we establish their validity somewhat more securely. Once this is done we can ex-
amine specific applications of covariance f unctions and spectral analysis in more
depth and detail. This will permit us in addition to move to related methods of
signal analysis, such as coherence functions, which also have found applicability
in studying the relationships between pairs of processes. Finally, these methods
are applicable not only to the study of continuous processes such as the EEG but
also form the bas is for the analysis of certain aspects of single and multiple unit
activity. Thus an under standing of how continuous processes are analyzed forms
a basis for studying unit activity.
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3.2 Discrete Fourier Representations of Processes

At the outset it is important to state a basic attribute of band-limited signals that is
of fundamental importance: Whether periodic or not, such signals must be infinite
in duration. This fact follows directly from the properties of the Fourier transform
for continuous signals. On the other hand, the properties of the Fourier transform
also guarantee that the spectrum of a finite duration signal, such as a segment of an
infinite duration signal, cannot be band-limited even when the infinite duration sig-
nal is. This means that there is an inherent contradiction built into our procedures
for analyzing infinite duration signals from their finite segments. The contradiction
is only resolved when the infinite duration signal is truly periodic. In all other cases
we are forced to settle for errors of estimation. The sampling procedure does not
alleviate these errors but introduces problems of its own, the kinds of problems we
deal with here.

Although it may be a fiction, we have assumed that the processes we are study-
ing are stationary mixtures of signals and noise with at least the noise being a
random process. The analysis procedures are by necessity performed upon their
finite duration segments. And here we invoke the next assumption, a true fiction.
This is that the finite duration segment is a single period of a periodic specimen
function. As objectionable as this might seem at first, it does no real harm since
we have no knowledge of the specimen function’s behavior outside this observed
interval. Because of stationarity, the statistical behavior of the specimen function
outside this observed interval is not likely to be much different. Thus we are not
disregarding any information that we have concerning the specimen’s behavior. In
the first chapter we assumed that the repetition period was equal to the time of ob-
servation T'. Other periodicity assumptions are also possible. If we want, we can
consider the repetition period to be longer than T, T” say, by padding out the ob-
served segment with a zero amplitude data segment lasting 77 — T sec. In a sense
this is falsifying the data, but we know exactly how we have falsified it and we can
take this into consideration in the subsequent analyses in order to avoid arriving
at erroneous conclusions. Padding out the data with zero amplitude segments is
a routine procedure when dealing with the estimation of the covariance functions.
In this case, as we shall see, it is convenient to make 7" = 27'. For the moment,
however, let the repetition period be T'. Let us keep in mind, then, the fact that
we have forced periodicity upon the process and that for practical purposes we can
make this periodicity length 71" or longer. Later on we shall use a 27" repetition
period to deal with autocovariance function estimation.

In Chapter 1 we introduced the Fourier series representation for a 7'— continu-
ous periodic signal and showed that if the signal were band- limited, its waveform
could be completely represented by a finite number of parameters. Specifically, if
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the period of the signal is 7' and its bandwidth is F, then N = 2FT terms are
involved in either the real or complex Fourier series representation. It was also
demonstrated that the signal could be completely represented by N consecutive
sample amplitudes spaced A sec apart where A = 1/2F sec. The Fourier and
time sample representations are closely related, the relationship between the two
involving what is called the discrete Fourier transform. We introduce it here and
show that in the bandwidthw limited situation, it leads to the same Fourier coef-
ficients as would be obtained from a Fourier series representation of the original
T'-continuous signal.

We start with a single 7" sec segment of a band-limited signal which we con-
sider to have period T. We obtain [NV samples of this signal at times ¢ sec apart
starting at the beginning of the segment, ¢ = (. Using these samples we can
partially reconstruct the original signal by means of weighted sine functions. The
partial representation is

N-1

sin[m(t — t°A)/A]
2(t) = Y 2(t°A) _ 3.1)
P m(t —°A)/A]

The reason for the reconstruction being partial is that we have ignored the tails
of the weighted sine functions outside the 7" sec segments. We can, however, insert
them because of the assumed periodicity of x(t). The complete reconstruction
takes in all the weighted sine functions throughout time:

o)=Y a(t°A) 8“;[(7;@ ;Z@X}A] (3.2)

to=—0o0

(3.2)
This now holds for all ¢. Now let us take the complex Fourier series represen-
tation of a single period from O to 7" = NA:

{XT(n) — LTy (toA)% exp(—2jmnt/T)dt a3

Xr(n) =4S o w(toA) [ SHREESE exp(—2jmnt/T)dt
(3.3)

This is actually a simple equation to deal with, given the periodicity of x(t).
Because of periodicity we have z[(N + t°)A = z(t°A). When this fact is taken

into account for values of £° outside the range 0 to N — 1, Eq. (3.3) simplifies, after
some elementary substitutions, to

N-— [

i 2
Z (t°A) exp(— 2]7mt°A)/ sm;rw cos ?xdx (3.4)
T

*ﬂ\l>

XT(TL

— 00
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34
As long as n/N < 1, which is true for the band- limited signal, this further

reduces to
N—

2 (t°A) exp(—2jmnt°/N) (3.5)

(3.5)

The original integration operation upon z(t) has thus been modified into a sum-
mation operation upon x(t°A).

This is an opportune time to reconsider the steps that led us to Eq. (3.5 ).
Our data specimen was a T’ sec segment of an ongoing process band-limited to
real frequencies between 0 and 1/2A. We assumed, solely for the purpose of
analysis, that this segment was one period of a periodic process. We then sampled
the segment at interval A sec apart to obtain an N sample representation of it.

Because of the bandwidth limitation and the periodicity assumption, we need
only N Fourier components at complex frequencies spaced equally from -1/2A to
1/2 A to represent the data completely. Now, in the majority of situations, the
data do not arise from a periodic process but are specimens of an aperiodic process
with power distributed at all frequencies up to 1/2A (or at all the complex frequen-
cies between - 1/2A and 1/2A). Hence, our periodicity assumption has in a sense
falsified the data. It has produced a representation of the signal requiring only N
Fourier components. This is not a serious falsification, however. What it amounts
to is saying that all the frequency components in the narrow frequency band be-
tween (n — 1/2)/NA and (n+ 1/2)/NA, aband 1/N A wide, are considered to
be concentrated at the single frequency n/N A, and represented by xp(n). zp(n)
is therefore essentially the product of the frequency density of the Fourier repre-
sentation times the incremental bandwidth 1/NA. The density in that frequency
region can then be obtained by dividing Xr(n) by I/N.6. This gives

N-1
NAXy =AY a(t°A) exp(~2jmnt* /N) (3.6)
to=0

(3.6) A is a constant independent of the duration of the specimen and plays only a
minor role in the reconstruction of z(t) from the Fourier representation. For this
reason we define the discrete Fourier transform (DFT) of x(t) as xx(n):

N—
Xn(n) = NXp(n Z (t°A) exp(—2jmnt®/N) (3.7)

(3. 7) The elimination of the factor /V that appeared in Eq. (3.5) means that in
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order to recover x(t°A) from X (n), we must define the inverse DFT as

N/2-1
z(t°A) Z Xn(n)exp(2jmnt®/N) (3.8)
nf N/2

(3.8) To see this, we multiply both sides of Eq. (3.7) by exp(2jmnu®/N) and sum
over all the values of n between —N/2 and (N/2) — 1, the range of the complex
Fourier expansion. We obtain

N/2-1 N/2-1 N-1
Z Xn(n)exp(2mjnu®/N) = Z Xn(n) Z x(t°A) exp(—2mjnt’ /N) | exp(2mjnu’/N)
n=—N/2 n=—N/2 to=1

3.9
(3.9) We then interchange the order of the two summations on the righthand side
and consider the summation with respect to n. This is

N/2—1

Z exp[2mjn(u’® — t°)/N]

n=—N/2

For any value of ¢° different from «°, this summation is zero (as can be seen by
using the summation formula for a geometric series). But when t° = u°, the
summation is IN. Thus, Eq. (3. 9) reduces to Eq. (3.8) which is what we wished to
show.

Equations (3.7 ) and (3. 8) are a discrete Fourier transform pair and have been
justified on a heuristic basis. Later in the chapter we shall establish the validity of
the relation somewhat more carefully, paying closer attention to the properties of
continuous processes. It is also worth noting that the definition of the DFT varies
from author to author according to the handling of the factor N. The definition
adopted here seems to be the most common one.

The cosine and sine versions of the DFT are given by

N-1
An(n) =2 x(t°A) cos(2mnt®/N)

to=0
(3.92)
N-1
By(n) =2 x(t°A)sin(2mnt®/N)
to=0
(3.9b) These are associated with the complex relations Ay (n) = Xy (n)+Xn(—n)
and By (n) = j[xN(n) — Xn(—n)]. It is worthwhile pointing again that X x (n),
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the direct DFT, is a periodic function of n, period N, and its inverse z(t°A) is
a periodic function of time. That is, Xy(—N + n) = Xy(N + n), etc. and
X[(=N +t°)A] = z[(N + t°)A], etc. In the previous chapters, we considered
the index for the direct DFT to run from —N/2 to (N/2) — 1. It is clear now that
because of the periodicity it is equally satisfactory to consider n to range from 0 to
N -1

The periodicity of the direct and inverse DFT emphasizes the fact that when
the DFT is applied to an N sample sequence of data points, it is done under the
assumption that the data arise from a periodic process, period N. SOmetimes the
period can be considered to be greater than N by appending or ’padding” a se-
quence of zero amplitude samples, N’ — N of them so that the overall length of
the resulting sequence is N’. This padding with zeros is a technique commonly
employed in digital filtering and in the estimation of the acvf and spectrum of a
specimen function, as we shall see later. The resulting sequence of sample values
can be considered to arise from a periodic band-limited signal X (t), period N,
which is zero at L = N’ — N consecutive sample times. The DFT of this signal is

N'—1
Xyi(m) =Y &(t) exp(—2mjmt®/N') (3.10)
to=0

(3.10) Because of the fact that Z(¢) = x(¢) for values of ¢° ranging from 0 to N —1
and is zero for values of t° ranging from NV to N’ — 1, we have

N-1
Xni(m) =Y a(t) exp(—2mjmt®/N') (3.11)
to=0
3. 11
An especially important case is N/ = 2N. Here we have
. N—-1
Xm = Z x(t°A) exp(—2jmmit°/2N) (3.12)
to=0

(3. 12) Because of the 2N periodicity of Z(¢), the values of n range from —N to
N — 1 instead of from —N/2 to (N/2) — 1. If we examine Egs. (3. 7) and (3.10),
we see that when m = 2n, i.e. it is an even number or zero,
) N-1
Xon =Y _ x(t°A) exp(—2jmnt°/N) = Xy (n) (3.13)
to=0
(3. 13) This shows that the even index terms for Zox (n) are completely determined
by the values of the Xy (n). But what about the odd index terms? Some reflection
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on this reveals that these terms arise solely because of the padding procedure. They
are necessary to force Z(t) to be zero at the sample times between N and N' — 1.
They provide no additional information about x(t), but, interestingly enough, are
an essential ingredient for obtaining an estimate of the acvf from the estimated
spectrum. This point will be discussed later. Finally, it is easy to see that similar
results would be obtained if N’ were any other multiple value of V.

3.3 Aliasing

As we discussed in Chapter I, the necessity for sampling a signal at a rate compat-
ible with its bandwidth, the Nyquist rate, is vital to a meaningful interpretation of
a spectral analysis. Here we wish to establish this point somewhat more securely
and show in what way improper sampling, sampling at too low a rate for a given
bandwidth, obscures and falsifies spectral analysis. Let us begin by considering the
continuous signal z(t) to be periodic T, and to have an unlimited bandwidth. The
Fourier series representation for such a signal is given by

2(t) = > Xp(n)exp(2mjnt/T) (3.14)

(3. 14) where ) .
Xr(n) = % / 2(t) exp(—2mjnt/T) dt (3.15)

0

(3. 15) We wish to deal with the sampled representation z:(¢°A) and so we sample
x(t) every A sec, obtaining N samples such that 7' = A. We then blindly take the

DFT,
N-1

zf(n) = Z x(t°A) exp(—2mynt®/N) (3.16)
o
(3. 16 ) We have used the dagger symbol to indicate our suspicion that some-
thing may be amiss in this representation, i.e., that X}(n) may not be the same as
XT(n). That such is the case may be seen by substituting for each sample value
its Fourier series expansion as given by Eg. (3. 14) ;

One long equation! (3.17)

(3.17) The exponential term here has the important property that when m —n — 0
or some integer multiple of N, the summation over t° is equal to N; otherwise it is
identically O. That is, for fixed m,

N-—1
> expl2mj(m — n)t°/N] =
to=0

N — kN
{’ m T (3.18)

0, m#kN+n
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where k is an integer. Using this fact in Eg. (3.17), it can be seen that

Xtn) =N Y Xo(kN +n) (3.19)

k=—o00

(3.19)

This means that each term in the DFT of z(¢) is the sum of a possibly infi-
nite set of Fourier coefficients associated with the higher frequency components
in x(t). The higher frequency components are those corresponding to frequencies
that are greater than N by an amount kN. If z(¢) has no Fourier series components
for values of n equal to or greater than N/2 (corresponding to frequencies 1/2A
or greater), X]T\,(n) = NXr(n) = Xn(n); otherwise, X}V(n) # NXrp(n). This
means that the DFT for x(t) yields correct results only if z(t) is band-limited to
frequencies below 1/2A. When x(t) has a greater bandwidth, the high frequency
components add to the low frequency ones, an effect that is called aliasing be-
cause the high frequency components are misrepresented or misinterpreted as low
frequency ones. Once aliasing occurs, there is no way to properly sort out the
X7(n) components from the X}V(n) This is why the cut off frequency F' of the
analog prefilter must be matched to the sampling rate such that F' < 1/2A. Tt is
essential to the proper analysis of continuous data by sampling techniques. The
numerical value of n corresponding to the highest frequency representable by the
sampling procedure is N/2. As shown previously, it is determined by the relation
n/T = 1/2A. To see the effect of aliasing more clearly, consider Fig. 3. 1 which
shows a cosine wave of frequency F' = [/2A being sampled at the negative and
positive peaks. If the frequency of the wave increases a little above F' to F' 4 a
(dotted line), sine waves of frequency I 4 a and F' — a can be drawn through the
sampling points equally well. This gives us reason to suspect that a wave of real
frequency I’ + a will, after sampling, be confused with a wave of real frequency
F —a. With this in mind, let us examine Eq. (3.19) when n has a value of (N/2)—1.
Then all the X7 (kN + n) such that

EN +n=kN+ (N/2) —i= (k+1/2)N —i

will contribute to the terms XZTV(N /2) — i]. A real frequency term at (IN/2) — ¢
corresponds to complex frequency terms Xp[(N/2) — 4] and Xp[(—N/2) + i].
The aliases of X7[(IN/2) — ] are at frequencies ..., (—3N/2) — i,(—N/2) —
i, (3N/2)—i, ... while the aliases of X7 [(—NN/2+i] are at frequencies . . ., (—3N/2)+
i,(N/2) +1i,(3N/2) 4 i,.... If we group these aliasing terms in pairs, one term
from each sequence, we find that X7 [(—N/2) — 4| pairs with X7(N/2) + i) to
give a real frequency term at (N/2) + i. Similarly, there are real frequency terms
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Figure 3.1: Fig. 3.1. A cosine wave of frequency F (solid line) sampled at its
Nyquist rate. A higher frequency (dotted) wave, frequency F + a, is shown sampled
at the same rate. At the sample times it is indistinguishable from a lower frequency
(dashed) wave, frequency F - a.

at (3N/2) + 14, (3N/2) — i, (5N/2) + i, (bN/2) — i, etc. Thus a real frequency
data component at (IN/2) — ¢ will have alias contributions from whichever of these
higher frequency terms that are present in the data input to the ADC. In effect the
original Fourier representation of x(t) has been folded in accordion fashion about
frequencies that are multiples of 1/2A and collapsed into the frequency region
extending from 0 to 1/2A which is also called the folding frequency, (Fig. 3.2)

It is of some interest that aliasing effects can also enter into sampled repre-
sentations of data that are band-limited to the Nyquist frequency. We have seen
previously how the discrete Fourier transform is a completely adequate represen-
tation of a continuous periodic band-limited signal as long as the signal samples
are taken frequently enough to eliminate the possibility of aliasing. But in actual-
ity, few of the data one analyzes are periodic or band- limited, although the latter
condition can be approached as closely as desired by analog prefiltering prior to
sampling. Periodicity is another matter. Even when periodic stimulation is em-
ployed and the response or signal component of the data is periodic, the remainder,
the noise, is not. Periodicity is then lacking in the data. What the data analysis
procedure does in this situation is to effectively create periodic data from the T sec
data segment we have available to study. That is, we analyze the T sec segment as
though it originated from a process with period T or greater. This introduces some
complications which we need to consider. The “periodicized” process created from
a T sec segment of data (1) is generally not band-limited even if the original data
are, (2) can contain frequency components, apart from aliases, that are not present
in the original data. Let us deal with these complications in order, using as an illus-
tration a signal that is both band-limited and periodic, a cosine wave whose period
is 3T/8, T being the period of its observation. The periodicized version of this sig-
nal is shown in Fig. 3.3. It is clear that there are discontinuities in the periodicized
signal which guarantee that it will not be band-limited. In fact, it may be stated that
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Figure 3.2: Fig. 3.2. The accordion like folding of the frequency (or n) axis due
to sampling of a continuous signal. Frequency components of the original signal
marked with x’s on the faxis are interpreted in the sampled version as belonging to
the lowest frequency, an encircled x.

unless the original signal has rather special properties, i.e., that its amplitude and
time derivatives at t = 0 are the same as those at t = T, there will be discontinuities
in the periodic waveform and its derivatives that guarantee that the periodicized
signal will not be band-limited. We know that if we sample this process, every A
sec such that T = NA, we are sure to encounter aliasing, its severity depending
upon the sampling rate. If we apply the DFT to the samples and treat the resulting
Fourier coefficients as though there were no aliasing involved, we effectively con-
sider the data as having arisen from a periodic band-limited process, i.e., one that
has no discontinuities of any kind at the ends of the interval. This recreated signal
is also shown in Fig. 3. 3 for N = 16, A = T'/16. This means that the sampling
has distorted the original data, primarily at the ends of the interval. The high fre-
quency components associated with the discontinuities at 0 and T have been aliased
into the spectral representation. The numeric results obtained from the DFT show
the results of this aliasing. Both covariance and spectral analysis of the data can be
affected. Fortunately, the larger N is, the smaller the end effects tend to become.
They also diminish as the severity of the discontinuities diminishes.
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Figure 3.3: Fig. 3. 3. Top, a periodicized segment of a cosine wave. T’ is the
observation time and 3T/8 the period of the wave. Note the discontinuities at 0 and
T. Bottom, a continuous and periodic band-limited wave drawn through the sample
points A = T'/16 sec apart.

3.4 Leakage

3.4.1 A. Fourier series

Besides the aliasing that is introduced into the DFT representation of a time- lim-
ited segment of a nonperiodic signal, we must deal with another form of signal
misrepresentation, referred to as spectral leakage. It occurs with all aperiodic data
and even with periodic band-limited data whose period is not integrally related to
the time of observation. In the Fourier analysis procedures, the frequency compo-
sition of the data is computed to be a set of frequency constituents harmonically
related to /7, the fundamental of the time of observation. The frequency com-
ponents that are closest to the original frequencies in the data contribute most to
the analysis, but more remote frequencies may also be interpreted as being present
When in fact they are not. To see a specific example of this, consider the signal
to be the cosine wave whose period is 37'/8 (Fig. 3.3). We compute the Fourier
series representation of this signal first because it avoids all aliasing effects. The
Fourier series coefficients are given by

X (n)—l/Tcos(Q B ) exp(—2mj 24) dt
=7, Tyt P
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for —(N —1)/2 <n < (N —1)/2.

T
8 n
A == 2m— 2m— 2
7(n) /0 cos( 7T3Tt) cos( 7TTt) dt (3.20)

Br(n) = = /T COS(QWit) sin(27rﬁt) dt
R A 3T T

for0 < n < (N —1)/2. The values for Ar(n) and Br(n) are obtained by standard
integration formulas and are tabulated in Table 3. 1 forn =1,2,...8.

Table 3. 1 Fourier Series and DFT Coefficients for cos(2n8t/3T)

Inspection of the Fourier components as determined by Eq. (3. 20) reveals that
the analysis has decomposed the original cosine wave into frequency components
at all values of n. None of these corresponds to the frequency of the original sig-
nal which lies slightly below n = 3, but the coefficients are largest at n = 3 and
next largest at n = 2. There is a gradual diminution of component amplitudes as
n departs from these values. What has happened is that the power of the original
signal has been dispersed or “leaked ” out from the original signal frequency into
the neighboring frequencies of the Fourier analysis. No spurious power is added by
the analysis, for if all the Ap(n) and Bp(n) were squared and summed, their total
contribution would equal that of the original signal in the T sec interval. The net
effect, however, is a rather serious misrepresentation of the original signal whose
spectrum is a single real frequency component at 8/3T. The cause of the misrep-
resentation is that only a finite length of the signal segment has been used for the
analysis. It is possible to show that the Fourier representation of a T sec segment
of data results from a convolution of the spectrum of the original, infinite duration
signal with the sinc function sin(zwnt/T")/(wnt/T). To see how this comes about,
we refer back to the expression for X7 (n) in Eq. (3. 20) where we replace the
illustrative frequency 8/37 by the general frequency f so that z:(t) = cos 27 ft.
We can calculate the A7 (n) and Br(n) for this signal and find them to be

1 [sin 27T(f — (n/T))  sin27T(f + (n/T))}

Ar(n) = T 27(f — (n/T)) 2r(f + (n/T))

Br(n) =~ et G cosZU ) =
2r(f = (n/T)) =1 27(f + (n/T))

T
(3. 21) The terms containing f — n/T and f + n/T are a manifestation of the
fact that cosine and sine waves consist of positive and negative complex frequency
terms. We are considering real (positive) frequency data and so both f and n are
greater than O. In most cases f will be sufficiently greater than O to make the second

} (3.21)
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term of Eg. (3.21) negligible compared to the first. This results in the approxima-

tion
_ Lsin27T(f — (n/T))

AT = T 0~ /1)
_ lcos2rT(f — (n/T))
Bl = = o (F = (/) — 1 622
(3.22) From this we obtain the spectral power at real frequency n/T"
Xr(n)|? + | Xr(=n)|? = 1[|Ar(n)]? + |Br(n)|?
{| O+ Al LBl
— L 7aT(f—n/T)

(3.23)

The total power of z(t) = cos2m ft is 1/2 and is concentrated solely at fre-
quency f. The Fourier analysis has in effect dispersed or leaked this power out into
neighboring frequencies that are harmonically related to 1/7". This also means that
if one is interested in estimating the spectral component of the data at a partic-
ular frequency, there will be included in the estimate a contribution from nearby
spectral components that have had their power leaked into the frequency where the
estimate is being made. The weighting factor for these extraneous contributions is
that given by the bracketed term in Eq. (3.23). It shows that the larger T becomes,
the smaller is the frequency range over which leakage is a significant factor.

Leakage may also magnify the undesirable effects of 60 Hz or other single fre-
quency artifacts in the data. These may arise from a variety of causes: ineffective
electrical shielding, stray coupling of stimulus frequencies into the responses, and
so on. An important attribute of a signal with a line spectrum, one expressed by
delta functions in the spectrum, is that a rather substantial amount of power is con-
fined to an infinitesimally narrow frequency band rather than being spread out over
a broader range of frequencies. It is this concentration of power that can be so
potent in producing leakage into the estimates of power density in the neighboring
regions of the spectrum. The leakage occurs, as Eq. (3. 23) indicates, if the line
component is not exactly located at a harmonic of the fundamental analysis inter-
val. To see this, suppose a spurious line component is located midway between
adjacent harmonic frequencies of the analysis interval and that the rms strength of
the line is o,. The leakage of this component into the neighboring frequency terms
is well approximated by Eq. (3. 23) as long as the line is reasonably far from O fre-
quency. It can be seen that the larger N is, the narrower will be the frequency range
over which significant amounts of leakage occur. Because of the side lobes of the
sine function, leakage effects can occur between rather widely spaced frequencies
when a is large It is also true that the closer the frequency of a line component is
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to a harmonic of the analysis interval, the smaller is the leakage effect. The most
generally useful way of minimizing leakage is by means of spectral "windowing”
techniques of which more will be said later. These techniques, which are another
form of linear filtering, have the effect of estimating the spectrum in a way that
greatly minimizes the side lobe contributions to the spectral estimate.

3.4.2 B. Discrete Fourier transforms

Leakage is not alleviated by resort to the DFT. Rather, the situation persists and
is also overlayed with aliasing effects so that the resulting data representation
contains both inextricably combined. To see this we refer again to the signal
x(t) = cos2n8t/3T and represent it by its DFT as given by Eqs. (3. 7) and
(3.9), rewritten here for N = 16:

15
Xn(n) = cos(2mt®/6) exp(—2mjnt’/16)
to=0
15
An(n) =) cos(27t°/6) cos(—2mjnt®/16)
to=0
15
Xn(n) = Z cos(27t?/6) sin(—2mjnt°/16) (3.24)
to=0
(3. 24a) (3. 24b) (3.24¢)

In Table 3.1 we show the DFT coefficients for n ranging from 1 to 8 when there
are two different sample intervals, the first being T/16 with N = 16, and the second
T/256 with N = 256. The discrepancy between the tabulated values for either situ-
ation and those obtained from the continuous Fourier series expansion arises from
the aliasing introduced by sampling. As the sampling interval becomes shorter, the
discrepancy diminishes and what remains is the pure leakage effect. Again, what
causes it is the finite length of the signal segment, N samples in duration. If we let
x(t) = cos 2 ft and perform a calculation similar to that just done for the Fourier
series, we find that power has leaked from frequency f into frequency n/N. The
amount that has leaked is given by

[ Xn ()P + [ Xn(-n) = 3[lAn ()] + | By (n)]?]

 (sinTT(fA—n/N)
~ | Natnn(fa )] (3.25)

Is that right? Sine in the denominator?

The approximation arises as before because of the fact that we have ignored
the usually small terms involving f + (n/N). From Eq. (3. 25) we see that the
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leakage from frequency f into the nth component of the DFT has very nearly the
same behavior as it had for the Fourier series representation. Thus leakage in the
two cases is comparable although the leakage in the DFT tends to be the larger of
the two because the denominator of Eq. (3. 25) is smaller than that of Eq. (3. 22 ).

Another aspect of leakage is associated with the presence of a constant dc com-
ponent in the data. If only the spectrum of the data is of interest, leakage is not a
factor because the steady component shows up only in the n = 0 term of the Fourier
representation. But when one uses the spectrum as an intermediary step for obtain-
ing an estimate of the acvf (or ccvf) of the data, then leakage does become a factor.
Such a procedure is quite common when one employs the fast Fourier transform to
first obtain the spectral estimate and then the acvf from it. The reason that leakage
becomes a factor is that in this procedure it is necessary to pad out the original
sequence of N data points with a sequence of zero amplitude samples, L of them
if one wishes to estimate the acvf for lags up to LA This means that the DFT that
one,works with is

N—
Xni(n Z (t°A) exp(—2mjnt® /N") (3.26)

(3. 26) The upper limit is N - 1 rather than N* - 1, (N’ = L + N), because the
last L values of z(tA) are taken to be 0. When z(¢) has an average value a, the
contribution of this to x x(n) is

N-1 .
, 1 — exp(—2mjnN/N’)
Xymae =a —2mint®/N') = 3.27
[ o (n)]d ato:() exp( I / ) “ 1-— eXp(—QW]n/N’) ( )

(3. 27) The contribution to the raw spectral estimate [Cx x (1)]ae = |[Xn7(n)]ac|?
follows directly. It is

sin(mnN/N")

HXN/(n)}dCF = a2[ sin(mn/N')

1 (3.28)
(3. 28 ) For n = 0, the result is (aN)? as is to be expected. If a data record of
length N = 1000 were padded with 10 zeros to permit estimation of the acvf out
to 10A, the dc leakage at n = 1 would be 100a?. If the record were padded with
100 zeros, the dc leakage at n = 1 would be 1.053210%a2. The effect obviously
depends upon the strength of the dc term. In the second case, if a is 5 times the
amplitude of the real component at n = 1, one could expect an error in the spectral
estimate amounting to about 24%, a rather serious matter. To eliminate leakage, a
good procedure is to first remove the average value from the data before padding it
with zeros.
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3.5 Trend

Another effect that we need to be aware of is one that is brought about by the
presence of very low frequency components in the data, frequencies that are less
than that of the fundamental frequency of the analysis interval. Such components
are referred to as producing trends in the data. These are progressive changes in
the short term mean of the data, a mean that is calculated over a relatively small
segment of the data. Trends may also be found in other properties of the data
such as the variance and covariance functions, but here we are concerned only with
trends in the mean and, more specifically, linear trends, i.e., those trends that can be
described by data having the form x(t) = bt 4 v(t), bt being the trend component
and v(t) the component one normally considers in a trend-free situation. It is also
possible to take into account trends which are not linear (Otnes and Enochson,
1974) but here we are only interested in seeing how linear trends affect a spectrum
analysis. When a linear trend is present in an N sample sequence of data, it will
contribute to the DFT according to

N-1

[ XN (7)]trend = Y _ bt° exp(—2mjnt®/N) (3.29)
t°=0

(3. 29) The expression can be summed without difficulty. When n is small com-
pared to N, we find that

[CXX (n)]trend = |[XN (n)]trend’2 = (bN/27Tn)2 (3.30)

(3. 30)

In effect the trend leaks into the nearby low frequency components in a manner
that is inversely proportional to n?. Note that bN is the total trend in the data
from the beginning to the end of the sequence. To eliminate contamination of the
spectral estimates by trends, the trends should be estimated and removed before
a spectrum analysis. Procedures for doing this are given in Otnes and Enochson
(1974) and Blackman and Tukey (1958).

3.6 The power spectrum, general considerations

When investigating the properties of samples of random variables, it is useful to
characterize them by population statistics. In the case of a simple, univariate ran-
dom variable, the mean is a measure of its location (from zero), and the variance is a
measure of its dispersion about the mean. These two statistics are also of use when
investigating random signals. The mean specifies a baseline about which the signal
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fluctuates. If the physical signal is an electrical one, then the mean corresponds to
the de level of the signal. The variance provides a measure of the magnitude of the
signal’s fluctuation about its mean. For electrical signals, the variance corresponds
to the power of the ac component of the signal. While the mean and variance are
useful and readily computed statistics, they provide no information concerning the
temporal character of the fluctuation of a random signal. We cannot infer from
them whether the signal’s fluctuations are slow or rapid or whether they possess
some rhythmicity or a high degree of irregularity. However, as we noted in Chap-
ter 1, if the signal is wide sense stationary, such information can be provided by
the power spectrum of the signal. The power spectrum provides a statement of the
average distribution of power of a signal with respect to frequency. If the signal
varies slowly, then its power will be concentrated at low frequencies; if the sig-
nal tends to be rhythmic, then its power will be concentrated at the fundamental
frequency of the rhythm, perhaps at its harmonic frequencies, if the signal lacks
rhythmicity, then its power will be distributed over a broad range of frequencies.

A way of obtaining an estimate of the power spectrum of a signal at a given
frequency is to pass the signal through a narrow band linear filter centered at the
frequency of interest, and then to compute the variance (power) of the filter output.
This operation can be performed at any frequency of interest. The variance of the
output of the filter will be proportional to the amount of power in the signal at fre-
quencies close to the filter center frequency. The variance can then be plotted as a
function of the filter’s center frequency and the resulting graph will be an approx-
imate indication of the frequency distribution of the signal’s power. This filtering
approach was the traditional way of analyzing spectra before the advent of high
speed digital computers. It is still useful conceptually although the mechaniza-
tion of the filtering techniques has been changed drastically by the computer. The
concept of a power spectrum applies to both T-continuous and T-discrete signals.
Because we are usually interested in continuous signals, we will begin with a dis-
cussion of the power spectra of wide sense stationary continuous signals. Then we
move to consider more fully the computation and interpretation of power spectra
from wide sense stationary sampled data. This is the representation of continuous
signals that digital computers usually operate upon.

Ilustrations of how a power spectrum characterizes the temporal behavior of
a signal are provided in the following examples. First, consider an EEG recording
from a subject in deep sleep (Fig. 3.4a). In such a case the BEG consists primarily
of slowly fluctuating, high amplitude delta wave activity. Consequently, most of
the power is concentrated at low frequencies and so the spectrum will be relatively
large at those frequencies, and small elsewhere (Fig. 3.4b). As a second example,
consider the EEG of an awake but resting subject. In this case the EEG may con-
sist of primarily rhythmic, quasisinusoidal alpha wave activity in the 9 to 12 Hz
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Figure 3.4: Fig. 3.4. (a) A hypothetical example of a low frequency EEG wave-
form recorded from an individual in deep sleep. (b) Power spectrum corresponding
to the low frequency EEG process.

frequency range (Fig. 3.5a). The associated power spectrum will have a peak in
the 9 to 12 Hz range and be relatively small elsewhere (Fig. 3.Sb). In the third
example, consider the EEG of an alert subject. Here the EEG tends to consist of
low amplitude waves with rapid, irregular fluctuations (Fig. 3.6a). No predominant
rhythms or slow fluctuations are apparent. The corresponding power spectrum will
tend to be broadly distributed over the frequency range of the EEG (Fig. 3. 6b), a
range which extends to an upper frequency of about 30 to 50 Hz.

The three foregoing examples illustrate how the power spectrum provides a
characterization of the “average” temporal behavior of a random signal. But it
does not uniquely specify the signal it is derived from. One cannot reconstruct the
signal given only its power spectrum because the power spectrum does not preserve
the phase information in the signal. In effect, the spectrum specifies the average
strength of a signal at each frequency. The average strength at a given frequency
reflects both the amount of time during which there is activity at that frequency and
the strength of that activity. For example, consider Fig. 3. 7 which illustrates both
a persistent, relatively low amplitude rhythmic random signal (a), and a signal in
which relatively high amplitude bursts of rhythmic activity occur irregularly (b).
The magnitudes of the power spectra corresponding to the two signals may be
the same near the frequency of the rhythm. Although the signal in Fig. 3.7b has
higher amplitudes during the bursts of rhythmic activity, the average power near the
frequency of the rhythm is no greater than that of the signal in Fig. 3.7a because
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Figure 3.5: Fig. 3. 5. (a) A hypothetical example of EEG alpha activity. (b) Power
spectrum corresponding to an EEG process with pronounced alpha activity.
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Figure 3.6: Fig. 3. 6. (a ) A hypothetical example of rapid, irregularly fluctuating
EEG recorded from an alert individual. (b) Power spectrum corresponding to the
rapid, irregularly fluctuating EEG.
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x, (1)

a)

% p(t)

b)

Figure 3.7: Fig. 3. 7. Hypothetical example of (a) a low amplitude random pro-
cess with persistent rhythmic activity, and (b) a random process with irregularly
occurring bursts of high amplitude rhythmic activity.

the duration of the rhythmic activity in (b) is less than in (a).

3.7 Power spectrum of continuous random signals

In the above discussion we presented the concept of the power spectrum from an
empirical point of view. We held that the variance of the output signal of a narrow
band linear filter provides a measure of the power of the components of the input
signal whose frequencies are in the pass band of the filter. We now examine this
statement more closely, taking a mathematical point of view. Consider Fig. 3.8.
x(t) is a wide sense stationary random signal whose power spectrum is of inter-
est to us. For simplicity, we assume that the mean value of z(t) is zero. H(f)
is the transfer function and h(7) the corresponding impulse response (weighting
function) of the linear filter used to obtain a spectral estimate of x(¢). We shall
compute the variance of the filter’s output xy(¢) and relate it to x(¢) as well as to
h(7) and H(f) and to the power spectrum of x(t), Cx x (f).

We first state the output signal in terms of the convolution relation between

DAD. Please do not duplicate or distribute without asking.



118 CHAPTER 3. POWER SPECTRA AND COVARIANCE FUNCTIONS

x(1) Linear Filter xp(t)
hit);H(f)

Figure 3.8: Fig. 3.8. Block diagram of a linear filtering operation. The input
signal is (¢) and the output is x(t). The filter transfer function is H(f) and the
corresponding weighting function is h(7)

output and input, established in Chapter 2:

o (t) = /_Oo W)t — 1)/, dr (331)

(3 .31) The variance of the output can be expressed in terms of the variance of the
input signal and the filter impulse response function, as given above. Since the
output, like the input, has zero mean,

varle (1)) = Bl (0] = B{[ [ T hat -/ dr?) (32)

—00

(3.32)

Now the square of an integral can be exPressed as the product of two identical
integral s, differing only in the symbols used to denote the variable over which the
integrati on is performed. Then we have

varzy(t)] = E[/OO h(m)x(t —T)/,dT /OO h(u)x(t — )/, du] (3.33)

—00 — 00

(3.33) Since the averaging operation is with respect to the random variable x(t),
Eq. (3.33) can be rearranged so that the averaging operation is performed prior to
integration over 7 and .

varlza(t)] = /_ T )/, dr /_ TR E(t — D)ot —w)]/,du]  (334)

(3.34) E[z(t — 7)x(t — w)] is the autocovariance function (acvf) of x(t). Since
x(t) is wide sense stationary, the acvf is a function only of the difference between
7 and u. Denote the acvf by cx x(t) and substitute cx x (7 — u) into Eq. (3.34).
This gives

varlza(t)] = /_ T n(r)dr /_ T hWexx(r—w)ldy  (335)
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(3.35) Equation (3.35) indicates that the variance of x,(t), the filter output, is de-
termined solel y by the filter characteristics and the second-order statistics (acvf)
of the input signal. However, Eq. (3.35) does not show clearly just how the filter’s
action upon the input signal determines the variance of x(t). This can be brought
out if Eq. (3.35) is expressed in terms of the frequency response of the filter and
the spectrum of the signal as we shall do in the next step. But some comments
upon this step are first in order. Up to this point we have used a deductive argu-
ment to arrive at Eq. (3.35). We have assumed nothing about the nature or even
the existence of the power spectrum. We have only assumed that the input pro-
cess is stationary and that it has the acvf cx x (). We now make use of the fact,
first mentioned in Chapter I, that the power spectrum and the acvf of a wide sense
stationary process constitute a Fourier transform pair. The power spectrum is the
direct Fourier transform of the acvf, and the acvf is the inverse Fourier transform
of the power spectrum. The latter is indicated below, with the power spectrum of
x(t) denoted by Cx x (f).

exx(t) = / Cxx exp(27j ft) df (3.36)

(3 .36) Substitution of Eg. (3.36) into Eq. (3.35) yields an expression which relates
the variance of the filter output to the power spectrum of the input signal:

o0 o0 o0
varzy(t) = / h(T)dT/ h(u)du/ Cxx(f)exp2mjf(r —u))df
- - - (3.37)
(3 .37) Equation (3 .37) can be further simplified by changing the order of integra-
tion, as follows:

var[zy(t)] = /_OO Cxx(f)df /_00 h(r)exp(2mjfr)dr /_OO h(u) exp(—2mj fu) df

(3.38)
(3.38) The two right-most integrals in Eg.(3.38) are Fourier transforms of the filter
impulse response, and hence may be stated in terms of the filter’s transfer function:

| hwesp-2nifu du = 1(7) [ bir)exp(znifeydr = H(-f) = ()
- - (3.39)
(3.39)

Note that H*(f) is the complex conjugate of H(f). since the product of a
complex quantity and its conjugate equals the squared magnitude of the quantity,
substitution of Egs. (3.39) into Eq.(3.38) yields

varlza(t)] = /_ T Cxx(DIHDEdf (3.40)
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(3. 40) This can be seen to specify the variance of the filter’s output in terms
of both the power spectrum of the input signal and the squared magnitude of the
filter’s transfer function.

Equation (3 .40) indicates that the power spectrum of a random signal is the
density of average power at a given frequency.The units are power per Herz. To
see this, suppose that the filter transfer function is unity over a narrow band b of
frequencies centered at frequency f. and zero elsewhere. Then,

17 fC_gSf§f6+g
0 elsewhere

|H(f)| = { (3.41)

(3.41) Substitution of Eq. (3.41) into Eq. (3.40) yields

fetb/2

varlen(t)] = /f ', o (3.42)

(3.42) Since b is small, the integral in Eq. (3.42) can be approximated by

var[zp(t)] = bCx x (fe) (3.43)

(3.43) Rearranging Eq.(3.43), and taking the limit as b becomes infinitesimally
small, yields

Cxx(fe) = lim varlza(t)] (3.44)

—0 b
(3.44) Note that var|z(t)] represents the total average power of the random pro-
cess in the narrow pass band of the filter : f. — (b/2) to f. + (b/2) Thus, from
Eq. (3.44) it can be seen that the spectrum is a density function. The integral of
Cxx (f) over all frequencies equals the total power of the random process. This
can be inferred from Eq. (3.40) by setting | H(f)|?> = 1 for all f. Passing a signal
through a filter with a transfer function of unity magnitude in no way alters the
amount or the frequency distribution of the average power of a signal. Hence, for
this case Eq. (3.40) reduces to

var[z(t)] = /_OO Cxx(f)df (3.45)

(3.45) It is useful here to reconsider two important properties of the power spectrum
previously discussed in Chapter 1.

e (1) As Egs. (3 .40) and (3.42) indicate, C'x x (f) is nonnegative at all fre-
quencies.
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e (2) It is an even function of frequency.

With regard to the first property, if negative values could occur, then by suitable
filtering one could obtain an output signal with negative power. However, this is
impossible since the power of a signal is the signal’s variance, and variance, being
the average of a squared quantity, can never be negative. The second property can
be inferred from the Fourier transform relationship between the power spectrum
and acvf, as follows.

Cxx(1) = [ eanlt)exp(-2mift e (3.46)
(3.46) Replacing the exponential in Eq. (3.46) with its Euler identity yields
Cxx(f) = / Crz(t)(coS2m ft — jsin2m ft)dt (3.47)

(3.47) Since ¢4, (t) is an even function of t and sin27 ft is an odd function of ¢, the
integral of the product of the acvf with the sinusoid will be zero. Hence

e}

Cxx(f) = / Crz(t)cos2m ft dt (3.48)
— 00

(3.48) Changing f to - f in Eq. (J .48) does not alter the cosine and therefore does

not alter the integral. Consequently, C'x x (f) must be a real, even function of .

3.8 The power spectrum of T-Discrete random signals

Use of a digital computer for power spectrum computations requires that the con-
tinuous signal be sampled.It is important that aliasing errors be avoided if an ac-
curate estimate of the power spectrum is to be obtained.When the signal is band-
limited, sampling at the Nyquist rate or faster will insure that aliasing will not
occur. If the signal is not band-limited or cannot be sampled at twice its upper
band-limit, then it should be low- pass filtered prior to sampling, so that activity at
frequencies above One-half the sampling frequency will be effectively eliminated.
A power spectrum estimate that is free of aliasing errors can then be obtained for
frequencies below one- half the sampling frequency. However, information con-
cerning activity at higher frequencies will necessarily be lost. Although the power
spectrum properties of discrete signals are closely related to those of the original
continuous signals, there are important differences which it is most useful to dis-
cuss.

The two approaches commonly used to estimate power spectra via digital com-
putation are:
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e (1) The estimation f irst of the acvf illld from it the power spectrum by the
use of the discrete Fourier transform (DFT) .

e (2) The computation of the periodogram, the “raw” spectrum estimate, by
applying the DFT to a finite N sample segment of the signal .

with the advent of the fast Fourier transform algorithm (Oppenheim and Schafer,
1975), the periodogram approach is usually the more rapid one. Once the peri-
odogram has been obtained, further steps are necessary to improve the goodness
of the spectral estimate. We will discuss these after paying initial at’tention to the
properties of the periodogram.

3.9 The Fourier transform for T-Discrete signals

The Fourier transform relationship between the power spectrum and the acvf for
T-continuous signals has been developed and discussed in Chapter 1. 111e Fourier
transform pair is restated here.

Cxx(f) = /00 Cez(t) €xp 27 ft dtexp(—j2w ft)dtxx (3.49)
(3.49)
Coolt) = [ Coclfyexpnstdf (3.50)

(3.50) An analogous relationship can be shown to hold for T-discrete signals. If the
period between samples is A sec and the upper bandlimit of the signal is less than
or equal to 1/2A, then Eq. (3.50) becomes

1/2A
Coz(t°A) :/1/2A Cxx(f)exp(2m ft°A, df (3.51)

(3.51) The acvf is defined only at the discrete times of {°A, where ¢° is an inte-
ger that can range from minus to plus infinity.However, C'x x (f) is a continuous
function of frequency. Note that Eq. (3 .51) is obtained from Eq. (3.50) by di-
rect substitution of tA for ¢ and setting the limits of integration to correspond to
one-half the Nyquist frequency.

The discrete analog of Eq.(3.49) is a summation over the discrete set of acvf
values :

Cxx(f)=A D cua(t®A)exp(—2mj ft°A) (3.52)

t°=—00
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(3.52 ) When Eq.(3.52) is compared with Eg. (3.49 ), we see that tA replaces t,
a summation replaces the integral, and the finite time increment A replaces the
infinitesimal dt.The correspondence between Eq. (3.52) and (3.49 ) has been given
here by making some intuitively reasonable changes in the original T-continuous
transform pair. We will now demonstrate that the relationship is a mathematically
valid one. This is done by substituting for C'x x (f) in Eq. (3.51) the right side of
Eq. (3.52).

1/2A

Cxx(t°A) = / / A D can(T°A) exp(—2mj f7°A) exp(2m) ft°A)df
—1/28 T

(3.53)
(3.53) Interchange of the order of integration and summation yields
o0 1/2A
exx(t°A) = A ) cpa(r°A) / exp(=2mj f(t° — T)A)df  (3.54)
i —1/2A
(3 .54) The integral on the right side is easily shown to be
1 sin7(t° — 7°) 1/24 .
—_— = 2 t° —71°)A)d, 3.55
e BN LGRS AT LY

(3.55 ) When both ¢° and 7° are integers, the above integral is zero except for
t° = 7, for which case the integral equals 1/A. Hence, substitution of Eq. (3.55)
into Eq. (3.54) results in the elimination of all terms in the summation over 7°,
except the t° = 7° term. The A and [/A factors cancel. What is left is an identity
proving the equality of Eq. (3.54) and demonstrating the validity of the Fourier
transform pair for T-discrete signals, Eqs.(3.51) and (3. 52) .

We noted above that Cx x(f) is a continuous function. Examination of Eg.
( 3. 52) also indicates that C,,(f) is a periodic function of frequency, since all
the complex exponentials in the summation are periodic with the fundamental fre-
quency being 1/A. Thls property was to be expected in view of the discussion of
allasing in Section 3. 3. Note that only the frequency components between —1/2A
and 1/2A are needed to describe the signal.

3.10 The periodogram

The intention of this section is to show that the power spectrum of a stationary
random process can be estimated through use of the periodogram without having
first to estimate the acvf. We will show that the periodogram is equivalent to a
Fourier transform of the acvf. To do this we first discuss (1 ) the properties of an
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estimated acvf which is based upon a finite segment of a T- discrete waveform and
(2) the properties of an estimated power spectrum which is based upon the Fourier
transform of such a specimen acvf.

An estimate of the acvf of a stationary random process can be computed from
a T sec segment of the process.A set of N consecutive samples spaced A sec apart
is used as follows:

N—|r°|-1
Crn(TOA) = % Y atA)((t+7)A) | < N ~1 (3.56)
t°=0

(3.56) Note that the upper limit of the summation is a function of 7°. This is
because there are only a finite number of sample products available. For exam-
ple, in the 7° = 0 case, all N points can be used to compute the cross products
x(t°A)x(t°A). In the 7 = 1 case, only N - 1 points can be used to com-
pute the cross products since, when t© = N — 1, the cross product becomes
z[(N — 1)A]z(NA). The only data samples available are for the time points at 0
through (IV — 1)A. There is no N'A time sample available unless, as noted in Sec-
tion 3. 2, the data are periodicized. This will be discussed further in Section 3.18.
Thus the summation over the cross products must be limited to the range of t° = 0
to t° = N — 2 when 7° = 1. Similar reasoning is applicable to larger magnitudes
of 79, in which case still fewer sample cross products are available. The expected
value of ¢, (7°A) is

Elex X (r°A)] = L SN Bla@ea)z](t0 + ) Al}

= LN (oA (3.57)
_ caa(T°A) N—|r°|-1 1
- N to=0

(3.57)

Since the summation consists of N — |7°| terms, all equal to unity, the sum
equals N — |7°| and so Eq. (3.57) becomes
[l

ElexX(r°A)] = (1 — j\r )eaa(T°A) (3.58)

(3.58) Equation (3.58) indicates that Eq.(3.56 ) is a biased estimator of the acvf,
and that as the number of sample times N becomes large with respect to |7°|, the
bias becomes small.

An estimate of the power spectrum can then be obtained by using Eq. (3.52)
to compute the Fourier transform of the acvf estimate, Eq.(3.56). The summation
index |7°| is confined to the range — (N —1) to (N —1) since only N time points are
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available in the original sampled data segment and positive and negative values of
|7¢| are permitted up to N - 1. We then have for the estimate of the power spectrum,

R A N—1 N—|r°|-1
Co(f) = = > w(tA)z((t+ 7°) Al exp(—2mjfT°A) (3.59)
N To=—(N-1) t°=0

(3.59 ) This equation forms a basis for estimating the power spectrum although, as
will be shown, some modifications are needed so as to obtain statistically accept-
able results .

From a practical point of view, evaluation of Eq. (3 .59) can entail relatively
large amounts of computer time when N is large. For this reason it may be advan-
tageous to estimate the power spectrum directly by means of the periodogram of
the waveform specimen, as expressed by the following equation:

A N—-1
Prx(n) = | > " a(t°A) exp(—2mjnt® /N)[? (3.60)
t°=0

(3.60) Px x (f) is the symbol for the periodogram. It arises from the Fourier trans-
form of the unsampled T sec data segment of x (t),

Puo(f) = %IX () (3.61)

(3.61) When x(t) is band-limited, we can resort to the sampled representation and
the Fourier transform,

A N-1
Per(f) = ;| D #(t°A) exp(=2mj f1°A)[? (3.62)

to=0

(3. 62) Usually only the harmonic frequencies f,, = n/T = n/NA are of interest
to us (by periodicizing the original data), and we can obtain the periodogram from
the DFT;

= 15020 2(t1°A) exp(~2mjnt®/N)|?

(3.63) On occasion we shall write Px x (f,) as Pxx(n) so that the two notations
are equivalent.

We will now show that Py x (f) is equal to the C’XX(f) defined in Eg. (3.59).
As a first step, we note that the square of the magnitude of a complex quantity is
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equal to the product of that quantity and its complex conjugate. Hence,

A N-1 N-1

wa(fn) = % > w(t°A) exp(=2mj fntA) > w(u®A) exp(2mj fru’l)
s o
=¥ Z Z (t°A)az(uCA) exp[—27) f (1° — u®)A]

(3.64)

(3.64) We now make a change of variables, substituting 7° for t° — u°. Since both
t° and u° range from O to N - 1, the range will be - (N - 1) to (N - 1). Hence, Eq.
(3. 64) becomes

A N—1 N—|r°|-1
o - o
Peo(fa) = 5 Z Y oz [(u® + 7°) Al exp(—27] fu°A)
ro=—(N-1) u°=0

(3.65)
(3.65 ) Note that the upper limit of the summation over «° has been reduced by
|7°|. The reasons are the same as for the summation in Eq.(3.56). Comparison of
Eq. (3.59) with Eq.(3.65) indicates that the periodogram Px x ( f,,) is identical with
the spectral estimate C xx (f) obtained by means of the Fourier transform of the
sample acvf. The reason for preferring the periodogram as the vehicle for spectral
estimation is that it can be computed more rapidly, provided that a fast Fourier

transform algorithm is used.

3.11 Statistical Errors of the Periodogram-Bias

We previously indicated that the specimen or sample avcf, which is used explicitly
in Eq. (3.59) and implicitly in Eq. (3.60), provides a biased estimate of the acvf.
Consequently, the periodogram will provide a biased estimate of the power spec-
trum. The expected value of the periodogram can be obtained by substituting Eq.
(3.58), the expected value of the sample acvf, into Eq. (3.65).

E[Pm&(fn)] =A-- (3.66)

(3.66) Comparison of this equation with Eq. (3.52), which defines C,(f) as the
Fourier trans form of ¢, (7°A), yields

[ zz(fn)] = (3.67)
(3.67)
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The three right- most terms in Eq. (3.67) constitute the bias. Assuming that
K(t) is a zero mean random process, the bias will tend toward zero as N becomes
large.

To examine the nature of the bias in the frequency domain, we can rewrite Eq.
3.66 in a somewhat more general form, as follows :

E[Pu(f)] =A Y wp(rA)--- (3.68)
(3.68)
where o
- LN? ‘TO| <N
°N) = ! 3.69
wp(T°A) {O, 7ol > N (3.69)
(3.69)

The function wp(7°A) can be thought of as a ”lag window” function which
multiplies or weights the set of acvf terms, and, since it is different from unity,
“causes” the periodogram to be a biased estimate of the power spectrum. Since
we showed in Chapter 1 that multiplication in the time domain is the equivalent
of convolution in the frequency domain, Eq. (3.68) can be stated in the frequency

domain as
1/2A

—1/2A

(3.70) where Wx(f) is the Fourier transform of w(t).It can be shown that

wp(f) =N oy (= ) exp(=2mjfron)
_ 1 /sin(wNAf)\2 3.71)
- W( sin(rAf) )

(3. 71) Wg(f) can be thought of as a ” frequency window” function. Substituting

Eq. (3.71) into Eq. (3.70) gives

Pra(f) = A /”M L sintNA(fe— f) 5

I/QAN sinTA(f. — f) )2Cora(f) df (3.72)

(3.72)

A plot of Wg(f) is provided in Fig. 3.9a. Note that within the frequency band
of interest, —1/2A to 1/2A, Wg(f, — f) is near zero except at f = f,,. Hence,
only that portion of C,(f) which is near frequency f will contribute much to the
periodogram estimate of the power spectrum. This is illustrated in Fig. 3.9b .
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; v * if
-lr2a -I/NA O I/N& 17248
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Figure 3.9: Fig. 3.9. (a ) Plot of the window function, Wp(f) =
(sinTNAf)?/N(sinwAf)2, for N = 10.(b) An illustration of how the product
of Cxx(f) and Wx(f, — f) determines the expected valyue of the estimate of the
power spectrum
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Note that E(P xlIfc)l is equal to an area determined by the product of C (f) and
W. (E - £ ).As N becomes large, the area becomes more closely confined to fre-
quencies that are near to f,,. This means that by increasing N we can obtain a high
resolution, small bias estimate whose expected value is close to Cy(fy,). If N is
small, the expected value of the estimate will contain spectral components covering
a broad range of frequencies. In this circumstance only a low resolution, large bias
estimate can be obtained, and nuances such as sharp peaks in the spectrum may not
be detected.

A rough guide to the size of N necessary for the bias to become negligible can
be obtained from consideration of Eq. (3.72), Fig. 3.9b, and the fact that

1/2A /24 4 sm TNA(fe — f)\9
A £df = A df =1.0 (3.73
/1/2A )4 = /1/2A N sinTA(fe = f) S o

(3.71)

This means that if Cy,(f) is relatively constant over the band of frequencies
where the frequency window function is markedly greater than zero, then the right
side of Eq. 3.72 is approximately equal to C.(f,). Inspection of Fig. 3.9b sug-
gests that N should be such that C,,.( f) does not vary significantly over a frequency
bandwidth of about 4/NA Hz.

The concept of leakage that was discussed in Section 3.4 is simply another way
of describing bias or resolution. Examination of Fig. 3.9b indicates that the low
resolution, large bias situation is one in which activity at frequencies other than the
one of interest contributes to (i.e., leaks into) the estimate of C..(fy).

3.12 Statistical Errors of the Periodogram—Variance

Since P, (fy) is a function of the set of N random variables, the x(t°A), Pyz(fn)
is also a random variable. We already know that as N becomes large, the mean of
P, (f) approaches Cy;(f), the power spectrum of x(t). We now arrive at a trou-
blesome property of the periodogram, namely, that its variance does not become
small as IV increases. Instead, the estimation errors contained in Py, (f) will be of
the same order of magnitude as the P, (f) itself, regardless of N. Consequently,
the raw periodogram is not a consistent estimate of the power spectrum C'x x (f).
For Pxx (f) to be a consistent estimate in the statistical sense, its mean must ap-
proach the true spectrum and its variance must become small as N becomes large.
The periodogram meets the former but not the latter criterion. However, by appli-
cation of suitable averaging procedures the latter criterion can also be satisfied. We
will now discuss the basis of such averaging procedures.
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First, to gain insight into the nature of the variance of the periodogram, let us
consider the case of a zero mean, white Gaussian process. In this case, the samples
x(t°A) are independent of one anot her and the power of the process is uniformly
distributed over the frequency band from —1/2A to 1/2A. The acvf, Cx x (7°A),
is zero for all 7° except 7° = 0, at which point it has the value o2. The spectrum
Cx x (f) of such a process is easily seen to be equal to 2 A for all f.

We find the mean and variance of the perlodogram at zero frequency by setting
f = 0in Eq. (3.60). This yields

2B

N—-1
Pp(0) = <[> 2(t°A)) (3.74)
t°=0

(3.73) In Section 1.13 it was pointed out that the distribution of the sum of N iden-
tically distributed normal (14, o) random variables is normal (/V , v/No). Hence,
the distribution of aﬁbv:*ola:(toA) is Gaussian with a mean of zero and variance equal
to No2. It was further shown in Section 1.13 that the square of a zero mean, unit-
standard-deviation Gaussian random variable has a chi- squared distribution with
one degree of freedom. Thus inspect ion of Eq. (3.73) indicates that it can be ex-
pressed as the product of a constant times a chi-squared random variate, as follows

1 =

PX)((O) = AO‘?C[\/N
UCE to

1

z(t°A))? (3.75)
=0
(3.74)

The square of the quantity within the brackets has a chi-squared distribution
with one degree of freedom. Two other results from Section 1.13 are useful here.
The first is that the mean of a chi-squared variable with m degrees of freedom
equals m and its variance equals 2m. The second is that the product of a constant
a times a chi-squared random variate with m degrees of freedom has a mean equal
to am and a variance equal to 2a2. Applying these to Eq. (3.74), we have

E.:[P(0)] = Ao (3.76)
(3.75)
vary.[P(0)] = 2A%02 (3.77)

(3.76) Hence, the standard deviation of Py x (0) is v/2Ac?2. Since Cx x (0) equals
Ac?, the standard deviation of Py x(0) equals v/2Cx x(0). This shows that al-
though the expected value of Py x(0) equals Cxx(0), the variance of Pxx(0)
is independent of N, the number of time samples. The coefficient of variation of

PX)((O) is \/5
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The above result applies only to the estimate at zero frequency. A basically
similar but computationally more tedious development can be made for the value
of a periodograrn of a white, Gaussian process at any arbitrary frequency. The
mean and variance of the periodogram are (Oppenheim and Schafer, 1975)

E[Pxx(f)] = Ac? (3.78)
3.77)
in 21 FAN
var[Puy(f)] = A%02[1 + (W)Z] (3.79)
(3.78)

Equation (3.78) reduces to Eq. (3.76) when f equals zero or 1/2A. Since
[sin 27 fAN/N sin(27 f A)]? ranges between zero and one, we find that var[ Py (f)]
does not become small, viz.,A%0% < var[Pxx(f)] < 2A%¢2%. In practice it
is only necessary to compute the periodogram at the discrete set of frequencies
f =n/NA, where nis an integer. This makes it possible to use a fast Fourier trans-
form algorithm. At these frequencies, var[Px x (n/NA)] equals A%, Hence for
a zero mean, white Gaussian process the expected value of the periodogram equals
Cy(f) while its standard deviation is also approximately equal to Cy,(f). In-
creasing N will not reduce the standard deviation.

For a nonwhite random process the results are quite similar. The periodogram
again provides a biased estimate of C,,(f), as indicated by Eqs. (3.67), (3.68)
and (3.72). An approximate expression for the variance of the periodogram is
(Oppenheim and Schafer, 1975)

sin2m fAN

2
NsmonfA) | (3.80)

var[Pxx (f)] = C%x (f)[L + (
Thus, as in the case of a white Gaussian process, the standard deviation of the
periodogram is equal to C,,.(f) at frequencies n/N A and is slightly larger at other
frequencies. While increasing N will decrease the bias, as indicated by Eq. (3.72),
it will not effectively decrease the standard deviation of the periodogram estimate .

3.13 Averaging the Periodogram-the Bartlett Estimator

It is apparent from the preceding discussion that since the periodoqram is not a
consistent estimator of the power spectrum, a procedure is required that will atten-
uate the random fluctuations associated with the periodogram and produce a useful
spectrum estimate. One such procedure is to divide the signal specimen into a se-
ries of subsegments, compute a periodogram for each of them and then average the
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periodoqrams. This approach, first suggested by Bartlett (Oppenheim and Schafer,
1975), also gives one the opportunity of testing for stationarity. It is implemented
as follows. Let the signal segment be divided into M subsegments, each Nh sec
long. Denote the signal in the m** subsegment by

A = 2)[t° + N(m —1)]A),0<t°<N—-1,1<m<M (381

(3.80) The corresponding periodogram for the m!" subsegment is

PP(f) 7, Z J(t°A) exp(—2mj f1°A)|2 (3.82)
t°=0

(3.81) Thus, using Bartlett’s method, the estimate of the power spectrum of x(t) is

M
Bxx(f) = 7 3 PYR() (3.83)
m—1

(3.82) The expected value of the Bartlett estimator at frequency f,, is

M

1 m

B[Bxx(f)l = 77 2 BIPYR(f) (3.84)
m:l

(3.83) The expected value of the periodogram, P)((”}() (fn), is the same for all m and
is given by Eg. (3 .72). Hence, the expected value of the Bartlett estimator is the
same as the expected value of the individual periodograms and is given by

124 1 51n7TNA(fn)—f>
1/2AN sinwA(fn) — f)

E[Bxx(fu)] = A / Cxx(f)df  (3.89)

(3.84) The bias leakage properties of the Bartlett estimator are also the same as that
of the individual periodograms so that the remarks following Eg. (3.72) concerning
bias and leakage of raw periodograms apply here as well. What is most important
is that the variance of the Bartlett estimator is less than that of the periodogram, as
we shall show in the next section. The argument is based upon the assumption that
there is a total of V,,, M data points available, N,,, being the number of data points
in each of the M subsegments.
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3.14 Variance of the Bartlett Estimator

If N,,, the number of time points in a subsegment, is sufficiently large so that
cxx(T9A) is small for 7° > N,,, then the various subsegment periodograms,
Pé?) (f), will tend to be statistically independent of one another. This means that
the variance of the average of the M periodograms will be approximately equal to
the variance of the individual periodograms divided by M. (See Sections 1. 13 and
4.1.) Using this and Eg. (3.79), it follows that the variance of the Bartlett estimator
is approximately

. (m) B C%x(f) sin 27 fAN,, 5
var[Bxx (f)] = var[Pxx (f)]/M = 7 [ (Nm = 27TfA) | (3.86)
(3.85)
Thus, for f,, = n/N,,A and unequal to zero or 1/2A,
var[Bxx (fn)] =~ C%x(fn)/M (3.87)
(3.86a) and when f = 0 or 1/2A,
var[Bxx(0)] = 2C%x(0)/M (3.88)
var[Bxx(1/2A)] = 20% «(1/2A)/M (3.89)

(3.86b) (3.86¢) This means that Bartlett’s method is a consistent estimator of the
power spectrum since, as the total number of data points N = N,, M increases,
both the bias and variance of the estimate become small. The bias, as given by Eq.
(3.84), is determined solely by the length of the subsegments V,,, and diminishes
as N, increases. The variance is determined by the number of subsegments M to
which it is inversely proportional.

Since only a fixed number of time samples N, M is available for estimation
of the power spectrum, however it is done, there is a trade-off between the size of
the variance and the resolution of the Bartlett estimator. Variance is reduced by di-
viding the data segment into as many subsegments as possible, thereby increasing
M.But by so doing, one shortens the length of the subsegments N, and hence in-
creases the bias and decreases the resolution. Thus, the size of variance and bias are
inversely related to one another: as one increases, the other decreases. Variance it-
self is related closely to spectral resolution, the ability to detect fine structure in the
spectrum. Decreasing the variance of an estimate is brought about by decreasing
the length Nm of a data subsegment. This means that the periodograms have fewer
frequency components in them (smaller V,,) so that the frequency resolution de-
creases. Reduced resolution is therefore concomitant with reduced variance. Later

DAD. Please do not duplicate or distribute without asking.



134 CHAPTER 3. POWER SPECTRA AND COVARIANCE FUNCTIONS

we shall show this is another way by speaking of frequency resolution in terms of
bandwidth.

3.15 Fast Fourier Transform and Power Spectrum Esti-
mation

We mentioned in Section 3.8 that the main reason for using the periodogram ap-
proach to power spectrum estimation is that it can be carried out more rapidly than
by computing the acvf and then taking its Fourier transform. The savings in time
come about by use of the fast Fourier transform algorithm (Bergland, 1969; Oppen-
heim and Schafer, 1975) to compute the Fourier transforms of the original data, as
specified by Egs. (3.60) and (3.81 ). In order to take advantage of the fast Fourier
transform or FFT, we must confine the frequencies for which the spectral estimate
is computed to the discrete set of f,, = n/NA,n = 0,...,N — 1, where NA
is the duration of the segment. This is no restriction since the periodogram of a
band-limited process is completely represented by its sample values at frequencies
n/NA. We must emphasize the fact that the value of the spectral estimate at each
frequency does not depend upon whether the FFT or some other algorithm is used.
Neither are the bias and variance of the estimate affected by the choice of the al-
gorithm. The only difference may be in computational round-off error, which may
be smaller with the FFT, since the FFT entails fewer steps.

3.16 Smoothing of Spectral Estimates by Windowing

We have shown above that although the periodogram itself is not a consistent es-
timator of the power spectrum, a way of obtaining one is to average across a set
of sequentially obtained periodograms. Here we shall develop a different approach
to a smoothing of the periodogram Which also yields a consistent spectral esti-
mate. Our argument will apply mainly to estimates obtained at the discrete set of
frequencies f, = n/NA.

Rather than dividing the data into numerous time sequential subsegments and
averaging across time, the periodogram can be smoothed by averaging over narrow
bands of frequency. One important property of periodogram estimates that we
make use of here is that Px x(f,) for a white Gaussian process is the sum of the
square of two identical and independent Gaussian random variables (Jenkins and
Watts, 1968), except when f = 0, 1/2A. This property is also approximately valid
when the Gaussian restriction is eliminated and any peak in the spectrum is broad
compared to [/NA. This means that in most situations of interest, Px x(f) is
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proportional to a chi- squared random variable with two degrees of freedom. Since

E[Pxx(fn)] = Cxx(fn) (3.90)

and
var[Pxx (fa)] = Cxx (fn) (3.91)

2Px x (fn)/Cxx(fn)is a x3 random variable. A second important property of pe-
riodogram estimates is that for a white Gaussian process cov[Px x (frn), Pxx(fm)] =
0 when n # m. This property is also approximately valid for nonwhite and some
non-Gaussian processes. Thus one can treat values of the periodogram at integer
multiples of {/N A as uncorrelated random variables.For more details, see Jenkins
and Watts (1968).

Let us now consider a spectral estimate made up of a weighted sum of peri-
odogram values;

n+K

Cxx(fa) = Y Pxx(f)W(fo— fr) (3.92)

k=n—K

(3.87) The W ( fi) are the weights of a spectral smoothing filter which weights and
sums the periodogram estimates from f,,_x to fn+x. Cxx(fn) is a new random
variable, and when the process is Gaussian, its mean and variance are given by

n+K
EBCxX(f)l = Y E[Pxx(fr)lW(fa— fr) (3.93)
k=n—K
(3.88a)
n+K
var[Cx X (fo)) = Y wvar[Pxx(f)]W?(fo — fr) (3.94)
k=n—K

(3.88b) Since frequency averaging is usually applied to periodograms obtained
from long data segments, the results of Section 3.12 indicate that Eqgs. (3.88a and
b) can be approximated by

n+K

ECxX(f)l = > Cxx(f)W(fu — fr) (3.95)

k=n—K

(3.89a)
n+K

varlCx X (fa)] = D Ckx(f)W?(fa — fr) (3.96)

k=n—K
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(3.89b)

These equations can be further simplified when the process is a white one (even
if only in the range of frequencies covered by the summation), in which case its
mean and variance are given by

K
BlCxX(fn)] = Cxx(fa) D W(fx) (3.97)
k=—K
(3.90a)
K
var[Cx X (fu)] = Ckx(fa) D W2(fr) (3.98)
k=—K

(3.90b) It is convenient to use only positive weights and to set » ., W(fx) = 1.
This results in no loss of generality. Since each weight must be no larger than
unity, the variance of Cx x (fn) must be less than the variance of Pxx(f,). A
rectangular filter, one which weighs equally all the periodoqram values from f,,_ g
to fn+ i has weights W ( fx) = 1/(2K+1). For a white noise process, the variance
of Cxx (fn) with such a filter is 1/(2K + 1) that of Pxx (f).

Because C'x x (fn) is the weighted sum of a set of Px x (f%) and each Px x ( fx)
is closely proportional to a x3 random variable, Cx x (fn) is itself closely propor-
tional to a X?l. 7. random variable and can be dealt with in this way. This was
discussed earlier in Section 1.13.The degrees of freedom d.f., and the constant pro-
portionality « for the random variable are given by

df — 2(E[Cxx(fa)])? 2 (3.99)

UaT[C'XX(fn)] B Z?:—K WQ(fk)

(3.91a)

o — E[Cxx(fa)] _ Cxx(fn)
T df.  df.

(3.91b) This means that we can consider d.f.[Cxx (fn)/Cxx(fn)] to be a X?l.f.
random variable. Applying this result to a rectangular smoothing filter, one which
weights equally the periodogram values from f,_x to f,+x’ we find d.f. =
2(2K +1). This was to be expected since 2K + 1 periodogram values, each with 2
degrees of freedom, were used to construct the estimate.Computations of this sort
can be carried out for any smoothing window of interest. For example, a Bartlett
estimator which is obtained by sectioning an N sample record into M segments,
each of length N/M, can be shown to have 3M degrees of freedom.

Equation (3.91a) shows that the degrees of freedom and the variance of the
estimator are inversely related.The equation also bears a close relationship to the

(3.100)
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number of frequency components being summed over: the greater the number, the
greater the degrees of freedom and the smaller the variance. We may assign to
the smoothing filter a generalized bandwidth parameter. This is the bandwidth (or
the number of frequency components averaged over) that a uniformly weighted fil-
ter would have in order to yield an estimator with the same variance as the actual
smoothing filter . This assumes the data have a flat spectrum over the range of
the smoothing filter. The bandwidth and variance are inversely related so that their
product is a constant. This can be readily seen for a white noise process being
smoothed by a uniformly weighted filter. The bandwidth. 2X + 1 and the variance
var|[Pyy(fn)/(2K + 1). This means that there is always a trade-off between vari-
ance and bandwidth. Small variance is obtained at the cost o f large bandwidth (or
low resolution) and vice versa.

The trade-offs between variance and resolution are much the same whether a
Bartlett estimator, Eq. (3.82 ), or a more general windowing approach, Eg. (3.87),
is used. However, there are differences in details.Inspection of Eq. (3.84) indicates
that the Bartlett estimator is the equivalent of using a frequency smoothing filter of
the form (sint NAf/NsintAf), referred to as the Bartlett window. While the
Bartlett window has been widely used and provides a reasonable balance between
variance and resolution, in some instances other window shapes may be more de-
sirable.An advantage of the averaging over the frequency approach is that a wide
variety of window functions can be devised according to the particular spectral
smoothing problem at hand. Details such as the precise width of the window func-
tion can be controlled by direct specification of the W ( fx) terms.

Although there is some latitude in selecting a spectral window function W ( fy,)
for a given application, there are practical constraints that should be evaluated.
Thus, while a window that extends over a broad frequency range will yield a low
variance estimate, it is associated with leakage from frequencies that are far from
the one at which the spectrum is being estimated. If these distant spectral com-
ponents are large, the window width should be narrowed to reduce the leakage.
Another consideration has to do with the values of the W ( fi,). There are relatively
common window functions that have negative values for some of the W ( f,). Such
windows must be used with caution since they can lead to negative spectrum esti-
mates .

From Egs. (3.90b) and (3.91a) it can be seen that the magnitude of Zszf  W2(fr)
is crucial in determining the variance of the spectrum estimate. The smaller the sum
of the squares, the smaller the variance. Given the constraint that 31 W(f,) =
1, it can be shown that the sum of the W?2(f;) terms will be smallest when all
W (fr) = 1/(2M + 1) in which case the sum of the squares equals 1/(2M + ).

Spectral windowing can also be implemented in the time domain by dealing
with the acvf. Since convolution in the frequency domain is equivalent to multipli-
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cation in the time domain, the time domain equivalent of Eq.(3. 87) is

N-1
Cxx(f)=A D w(t®A)éxx(t°A)exp(—2mjft°A) (3.101)
to=—(N—1)

(3.92) where ¢,,,(t°A) is given by Eq. (3.56), and w(t°A), commonly referred to
as a ’lag window,” is in effect the Fourier transform of w(i). Prior to the late 1960’s,
when the FFT became widely known, windowing was usually implemented in the
time domain, via Eq. (3.92). It is the Fourier transform of these lag windows
that sometimes yields negative W (f). A detailed discussion of the properties
of spectral and lag window functions and their implementation can be found in
Jenkins and Watts (1968), Otnes and Enochson (1972), and Welch (1967).

3.17 The Cross Spectrum

In Chapter 1 we discussed the concept of the cross covariance function (ccvf).The
Fourier transform of the ccvf is referred to as the cross spectrum. The cross spec-
trum provides a statement of how common activity between two processes is dis-
tributed across frequency. The cross spectrum is the Fourier transform bf the ccvf,
as indicated by Eq. (1.69). As an example, consider two processes each of which
consists of a quasiperiodic signal embedded in wide band noise processes. Sup-
pose the quasiperiodic signals are due to a common phenomenon so that they are
closely related. The wide band noise processes, on the other hand, are due to ran-
dom fluctuations that are unique to each process and so are unrelated. The cross
spectrum of the two processes would be relatively large in the frequency band of
the shared, quasiperiodic signal and small at other frequencies, since the wide band
noise processes are independent and not shared activity.

To some extent the cross spectrum can provide insight into the relationships
between a pair of random processes. Further insight can be obtained from the
coherence function, which is derived from the power spectra and cross spectrum of
the pair of random processes. The coherence function will be discussed in Section
3.19.

The procedures and problems in estimating cross spectra are similar to those
described in the preceding discussion of the power spectra. It can be computed
by Fourier transform of the sample ccvf. However, with the availability of the
FFT algorithm, a periodogram approach in some instances may be preferable. The
bias-resolution and variance properties of the cross spectrum are the same for both
approaches and are similar to those of the power spectrum.

For example, consider the ccvf and cross spectrum for two wide sense station-
ary random signals, x(t) and y(¢).The sample ccvf may be computed i n the same
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manner as an acvf [see Eq. (3.56)], as follows,

N—|r°|-1
1 |72

Gy(TA) = Y0 BARE AL SN -1 (G0
to=0

(3.93)

The sample cross spectrum can be obtained in the same manner as the sample
power spectrum [see Eq. (3.59)], as follows,

N-1
Coy(f) =D D Gay(7°A) exp(—2mj f°A) (3.103)
To=—(N-1)

(3.94)

The expected value of the above cross- spectrum estimate can be found by
the same steps used to arrive at Eq .(3.72), the expected value of the periodogram
estimate. The result is

1/2A 1 (Sil’l’iTNT(fn - f)

2
sin 7T (fn — f) ) Cay(f)df  (3.104)

Bl =a [ 5
(3.95)

Eq.(3.95) is directly comparable to Eq.(3.72), the expression for the expected
value of the periodogram estimate of the power spectrum. As in the case of the
periodogram, increasing the length of the epoch segment N will decrease the bias
of the cross spectral estimate but its variance will not be effectively decreased.
Consequently, averaging and/or windowing techniques, as described earlier for es-
timation of the power spectrum, must also be employed when estimating the cross

power spectrum. Further details about cross- spectral estimates may be found in
chapters 8 and 9 of Jenkins and Watts (1968).

3.18 Covariance Functions

The auto- and cross covariance functions were introduced in Chapter 1 and shown
to be a way of representing the temporal relationships within an individual dynamic
process and also between different dynamic processes. The Fourier relationship be-
tween the cvfs a nd power spectra was also established for continuous stationary
processes and for T sec realizations of them. To do this for the power spectra we
re sorted to the artifice of considering a T sec segment of data to be one period of
a periodic process. This provided us with an estimator for the cvf and the spec-
trum of the continuous aperiodic process. The properties of the spectral estimators
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have been discussed in the preceding section.Now we move to a more detailed
consideration of the covariance function, pointing out some essential features of its
estimation and how this estimation is related to power spectrum estimation. - We
begin with the autocovariance function.

3.18.1 A. Some Statistical Properties of the ACVF Estimator

The representation of a T' sec segment of data as one period of a periodicized
specimen function x(¢) means that the estimated acvf is given by

1 N-1

G N(77) = 5 > EE)E (0 + 7°) (3.105)
t=0

(3.96) and is itself periodic, N. We use the tilde to denote that the acvf has arisen
from periodicized data Z(¢). The subscript N indicates the periodicity. (Throughout
this discussion we will assume the original specimen function to be band limited,
F = 1/2, and sampled at the Nyquist rate so that A = 1.) Whenever t° 4 7¢
exceeds N - 1, t° + 79 is to be considered as having its value taken “modulo N.”
That means, in this instance, that if t° + 7¢ = 117 and N = 100, the value taken
for t° + 79 is 17 and #(117) = (17). This follows from the periodicity of Z(°).
The estimated acvf that results from the use of Eq. (3.96) is sometimes referred to
as a circular covariance function because of this method of computation—the data
are in effect considered to be wrapped around a cylinder whose circumference is
T = NA. The circular covariance function estimator has a serious deficiency that
limits its usefulness. The nature of this deficiency can be seen by representing it as
two summations:

1 N—1—|r°| ~ N-1
Canl) = 1 D EE)@) T4 Y EE)F (470 - N)]
to=0 to=N—|r]|

(3.106)
(3.97) The absolute value sign serves to make the equation applicable to both pos-
itive and negative delays, though from the symmetry of the acvf about 7 = 0, only
positive values need be considered. Using this fact, it can be seen that the above
equation simplifies to

N — |77
N

)exx (%) + @C(N — |7 (3.107)

5xw,N(TO) = ( N

(3.98)
¢xx(7°), of course, is just the average of products of the form Z(¢°)(z)*(t° +
7). This means that the circular acvf estimator is a combination of two estimators
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of the acvf, one for 7° to and the other for N — |7°|. These two are inseparable
from one another in this method of estimation. Interpretation of the estimated
acvf can therefore be a problem. Of course, this is of no consequence when the
data really do arise from a process with period T. However, this is not usually
the case. Consequently, it is desirable to look for acvf estimation procedures that
are free of this problem. We need not seek far for one. All we need do is adopt
another periodicity artifice, one that begins by padding out the original sequence of
N samples with a sequence of samples of 0 amplitude, let us say L of them. Then
the data may be considered to arise from a specimen of a periodic process whose
period is N’ =N + L. We consider this for the simplest situation, when L = N and
N’ =2N.

In our new sequence, Z(t°) of length 2N, data samples Z (/N ) through Z(2N —1)
are O. Because of this, at each time lag 7° there can be only N — |7°| nonzero
products in the acvf estimate formed from the sequence. The acvf is then estimated
as the average of these products with, however, the averaging factor being taken as
I/N, N being the number of nonzero products when 7° = 0 rather than [ /(N —|7°]).
The reason for using the former is that the variance of the resulting estimator turns
out to be smaller at larger values of 7° than when using the factor /(N — |7°|)
(See Jenkins and Watts, 1968.) This gives for the estimator

2N—-1 N—|r°|—-1
1 ~
émz,ZN(TO) = ﬁ Z j(to)(,fb)*(to—}—’ro) = Z x(to);p*(to+7'0) = éXX(TO)
t°=0 t°=0

(3.108)
(3.99)

The tilde over the data samples is unnecessary. We have also returned to the
circumflex notation for the acvf estimate because circularity has been eliminated in
the computation even though we have arrived at ¢ x x (7°) by an argument involving
a periodicity of 2N. This estimate does not have the difficulty exhibited by the
circul ar acvf estimate with period N as given in Eq. (3.96). It is therefore to be
preferred to ¢x x (7°) in most instances.

The statistical properties of ¢x x (7°) are of interest. When the data z(t) arise
from a specimen function of random process x, we have

N—|ro|-1
Blen( = Y E@e' @+ G109
to=0

(3 .100) This means that ¢, (7°) is a biased estimate of ¢, (7°) because, as shown
earlier, E[¢;,(7°)] — €22(7°) = —|7°|c2z(7°)/N. Use of the averaging factor
1/(N —|7°|) would eliminate this problem, but only, as noted above, at the expense
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of increasing the vari- ance of the estimate as 7° becomes large. This is generally
thought to be undesirable.

The variance of ¢x x (7°) may be calculated from its definition in Eq. (3.99).
The result depends upon the statistical properties of the process.In the Gaussian
case, the one of most general interest, it can be shown (Jenkins and Watts, 1968)
that

% Z [Cix(ko) + cxa:(ko + TO)Caca;(k?O - 7'0)] (3.110)

ko=—oc0

Var[Cyy (7°)]

(3.101)

This means that the variance of the acvf estimate of a Gaussian process depends
upon the acvf itself, something we generally do not know beforehand. For the
particular situation in which the process is white noise with variance 02, ¢, (7°) =
026(7°) and var([é,.(7°)] = o4/N for all 7° except 7° = 0 in which case the
variance is 204 /N . Note that when x is an aperiodic process with no dc component,
c2,.(7°) becomes small as 7° becomes large. This means that the summation on the
right-hand side of Eq. (3.101) will be finite so that when we divide it by N to obtain
the variance of Cy(7), the result becomes small as N increases, indicating the
estimator to be a consistent one. This also can be shown to hold when the process
is non-Gaussian. Further scrutiny of Eq. (3.101) seems to indicate that difficulties
are encountered when x(t) has a periodic component in it, which can occur when
there is residual interference from 60 Hz power lines. In this case, c2,,(7°) does not
become small as 7° increases and the summation becomes infinite. Does this mean
that the variance of the estimate is infinite regardless of N? The answer is no. The
difficulty arises in the formulation leading to Eq. (3.101). When proper account is
taken of the pure frequency component in x(t), the variance of the estimate turns
out to be the same as before.

The statistical relationship between estimates of the acvf made at neighboring
time points is also of some interest. This refers to the fluctuations of the estimate
about the estimated mean of the acvf. What we are in effect discussing is the
covariance of the estimation errors. The problem is a thorny one, but some results
exist for the Gaussian stationary process. In particular, the covariance between
acvf estimates at Tland T2is given by (Jenkins and Watts, 1968)

o0

Z [sz (TO)C“"‘T (7“04—7‘{) _Té)) +Crx (TO+T{))C£$ (TO_TQO)

r°=—00

. . 1
coV[Cee(T7), Caa(T5)] N

(3.111)
(3.102) This equation, from which the previous one was derived, points out some
useful features of the acvf estimate. First, the estimates are uncorrelated only when
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the x process is a white noise with c,,(7°) = 02(7°) Second, for any process

which has an acvf with nonzero values extending over K successive intervals, there
will be a nonzero covariance between acvf estimates that are closer than 2K apart,
that is, for which |77 — 75| < 2K. Narrow band processes have covariance func-
tions of this type. The covariance between estimates becomes smaller as |7 — 75
approaches 2K. But the major fact is that when the process is a narrow band one,
a larger N is required to obtain an acvf estimate in which the covariance between
estimates is to be kept beneath a given maximum. This can be of importance in
dealing with acvf estimates of the EEG. An EEG with a marked alpha component
will, for a fixed N, have a greater amount of covariance between acvf estimates
than will an estimate of the covariance function obtained when the alpha compo-
nent is small or lacking. Another aspect of the covariance function of narrow band
processes is that there is little, if anything, to be gained by smoothing the acvf esti-
mates because this does not reduce the covariance between neighboring estimates.

3.18.2 B. Estimation of the ACVF

The functional form of the estimator in Eq. (3.99) suggests the obvious “brute
force” way of calculating the estimates: averaging for each value of 7° the N — 7°
products obtained from the N samples sequence. Computationally, the proce-
dure is a lengthy one since complete evaluation of ¢,,(7°) requires that there be
N(N+1)/2 multiplications and N(N - 1)/2 additions, a total of N2 arithmetic oper-
ations. When N is large, the time required to complete this task becomes excessive.
While some short cuts have been found for these time domain procedures, the net
time savings has not been impressive. What has brought about a significant re-
duction in computation time has been the fast Fourier transform algorithm. Its use
makes it possible to obtain estimates of the acvf by first estimating the periodogram
of the data and then taking the inverse discrete Fourier transform. Since there are
about Nloga N operations involved in estimating the periodogram and about an-
other 2Nlog2(2N) in taking the inverse DFT, the great computational savings are
apparent. For example, when N = 1000, the method of Eq. (3.99) requires about
10 operations, while the DFT method requires about 4210* operations. The re-
duction in the number of operations is by a factor of over 25, a factor that increases
as N increases. Because the OFT is such an efficient approach to acvf estimation
when N is large, we shall describe it further.

We have already noted that the acvf estimate of Eq. (3.99) can be considered
to arise from a periodicized process whose initial N samples are the x(t°A) and
whose final N samples are all zeros. To guard against spectral leakage effects of the
dc component, we subtract out the average value of the N samples before padding
the sequence with zeros. We may also de-trend the data if that seems warranted.
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The resulting sequence of 2N points then possesses the avcf we are interested in.
An alternative way of arriving at this acvf is to first obtain the periodograrn of the
padded sequence. The periodograrn of an unpadded sequence of N data points has
been given in Section 3.10, Eq. (3.60). When the sequence is padded to length
N’ by adding L consecutive zeros such that N’ = N + L, the periodogram of the
padded sequence is

N-1
1 1 .
Prgni(n) = ﬁ|XN’(n)’2 = ﬁ’ ) a(t°) exp(—2mint®/N)P (3.112)
to=0

(3.103) The upper limit in the summation is N - 1 rather than N’ - 1 because the
last L values of the sequence are zero. When N’ = 2N, we have

1
Popan(n) = |Z (t°) exp(—2mjnt® /2N) |2 (3.113)

(3.104) Notice that because the fundamental interval is 2N rather than N in length,
there are twice as many frequencies present in the 2N periodogram. These addi-
tional frequency components are required to express the fact that the second hal f
of the sampl e sequence is constrained to be zero. They afford no additional infor-
mation about the ori ginal data but only serve as a computational vehicle to arrive
at the acvf estimate. Note also that the presence of 2N rather than N in the denom-
inator does not increase the number of operations involved in the computation.

Having once obtained P, 2 (n), its inverse DFT can be taken and it yields the
estimated acvf:

1
tra(7) = > Puan(n)exp(2mjnt®/2N) (3.114)

(3.105) Use of the factor [ /N rather than 1/2N in the above equation might, at first
glance, appear to be an error. It can be verified to be correct by taking the DFT of
the padded sequence Z(£°) and substituting this into Eq. (3.99, top). After carrying
out the summations and using Eq. (3.103), we arrive at Eq. (3.105). Furthermore,
because ¢, (7°) is an even function, the computation need only be carried out for
positive values of 7°. Another way of writing Eq.(3.105) takes advantage of the
fact that P,; o (n) is real. Using this, we have

N—
P,
Cpa(T0) = —— 2 (0 Z 2N (1) cos(2mnT? /2N) (3.115)
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Figure 3.10: Fig. 3.10. Computation of the estimated avcf C’wx(to) at lag L from
a periodicized sequence of N data points padded with L zeros.Only N - L products
can differ from zero .

(3.106)

The derivation of the estimated acvf from the periodogram has just been shown
to be valid for all values of 7° up to N. In practice, there is usually little need to
carry this out to such large lag values.Usually, lags that are less than 10% of N
are only of interest. Because of this there are further savings to be obtained in the
use of the DFT. Let us assume that the acvf is of interest up to a lag of L < N.
Then when we pad the original sequences of N data samples, we need to add L
zeros to get an overall sequence of length N’ = N + L. This guarantees that any
estimation of ¢, (7°) at values of 7° < L will be free from wraparound or overlap
effects with the next period of the periodicized data. The effect of padding the data
with L zeros is shown in Fig. 3.10 when the lag is L. It can be seen that there are
N - L products which are nonzero and L. which are forced to be zero.and that none
of the nonzero products arises from the overlap of one period with the next.

The N’ periodogram of the padded data is given (after average values and pos-
sible trends have been removed) by Eq. (3 .104) rewritten here

N-1
1
Pro v (1) = 7] > @) exp(—2mjnt®/N)[*, —(N' = 1) <n < (N' - 1)
to=0
(3.116)
(3.107) where N’ - N + L. As before, we have a larger range of n to deal with, but
the additional frequency terms in the periodogram only serve to take the padding
with zeros into account. The inverse DFT then yields our estimate of the acvf:

N'—1
éx:}c(To) = Z P:::a:,N’ (n) exp(—27rjn7'0/N'), 0< |7_O‘ < L (3‘117)
n=—(N'—1)

(3 .108)
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Because L is usually small compared to N, the inverse transform involves not
many more operations than does the computation of the periodogram.

3.18.3 C. Cross Covariance Function Estimation

The computation of the ccvf for two N length data sequences x(tA and y(tA)
follows the same principles that hold for the acvf estimate. Again, we assume
A = 1. The use of the direct and inverse DFT facilitates these computations when
N is large. If we are interested in estimating the ccvf for lags up to L, then padding
the x and y sequences with L zeros each eliminates the possibility of an overlap in
the computation. The procedure to be used, therefore, after padding the sequences,
is to obtain their respective DFTs, X y/(n) and Y. From them we obtain the raw
crossspectrum estimate Py, n/(n) = 1/N Xx/(n)Yn/(n) and then the estimated
cevf:

N'—1
1
Coy(T°) = ~ Py ni(n)exp(2mjnt®/N'), —L < 7° < L (3.118)
n=—(N'—1)

(3.109)

It will be remembered that C,,,(7°) is not an even function of 7° and so its ccvf
is to be estimated at both positive and negative values of 7°. This means a doubling
of the length of the last step of the computation, but when N is large, the FFT still
produces a substantially shorter computation than the -brute force method.

The statistical properties of the ccvf are close enough to those of the acvf so
that a full development of them would in the main be repetitious. Consequently, we
bring out only the highlights of the development and move quickly to the results.
The most common form of the ccvf estimator is the biased version

N—|ro|-1
1
by(70) =55 D w7+ 7°) (3.119)
t°=0

(3.110) ¢4, (7°) can be considered to be one period of a 2N periodic function,
and, as already shown, this is especially important when it is obtained by Fourier
methods. The biased version of the estimator is preferred for the same reason as
is the biased version of the acvf, that it tends to yield a smaller variance in the
estimate when TO becomes large. The variance of the ccvf estimator is derivable
from its definition. When both processes are Gaussian, it is given by (Jenkins and

DAD. Please do not duplicate or distribute without asking.



147 3.18. COVARIANCE FUNCTIONS

Watts, 1968),

o

Var|Cyy (7°)] ~ % Z [Caa (1) Cyy (1) 4 gy (10 4+ T°) €y (rO — 7°)] (3.120)

r°=-—00

(3.111) This shows that the variance is calculable only when we know what the
ccvf and both acvfs are. If both processes are white and uncorrelated, the second
term drops out and we have

Var[Cey(7°)] = N (3.121)

(3.112) The principal fact about the ccvf estimator is that it is a consistent one.
Also in common with the acvf estimator, the covariance between estimates at two
different lag times depends upon the difference between the lags and the covariance
properties of the processes. The covariance of the estimator is a generalization of
Eq. (3.111) which we show here for the special case when x and y are uncorrelated:

Z\H

COV[Cqy (T7), Cay (79)] =

o0
Z () eyy (r° + taus — 77) (3.122)

(3.113)

Equation (3.113) can be seen to be a discrete convolution of the two acvfs, the
separation variable being 75 — 7. Among other things, this means that when X
and Y are uncorrelated narrow band (nearly sinusoidal or pacemakerlike) processes
centered at about the same frequency, the covariance between estimates can rise
and fall cyclically over an extensive range of time separations. This in turn can lead
to spurious indications of covariance between processes unless special measures
are taken, beyond merely increasing N, to reduce the magnitude of the estimated
covariance between estimates. One such measure is prefiltering the X and Y data to
individually ”whiten” them before the covariance testing is carried out. The details
of such a procedure are beyond the scope of this presentation and may be found
in Jenkins and Watts (1968). However, the net import is that the use of the ccvf
estimator as a means for measuring dependency between processes is beset with
difficulties. These should be carefully assessed before experimentation designed
to exploit ccvf estimation is entered into. There is a distinct danger of arriving at
erroneous conclusions, especially in the case of pacemaker like processes.
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3.19 Coherence Functions

The difficulties associated with ccvf estimation have brought about the develop-
ment of an alternative method for evaluating the relationship between continuous
processes, the coherence function. The coherence function is a measure based
upon the auto- and crossspectral properties of the processes, not upon their cvfs. It
closely resembles the square of a correlation coefficient between the spectral com-
ponents of the processes at a particular frequency f. Thus the coherence function,
or squared coherence, is defined as

L
5el) = e H )

(3.114) Because the |,y (f)|? ranges in absolute value from 0 to cxx (f) cyy(f),
2

"%—y( f) can be seen to be a normalization of the xx yy xy square of the cross spec-
trum by the product of the autospectra. The normalization is important because
it compensates for large values in the cross spectrum that may have been brought
about not by an increase in the coupling between the processes at frequency f but
by an inherently large concentration of power at that frequency in either the X or Y
process. If the X and Y processes are identical, then Czy(f) = Czz(f) = Cyy(f)
and mgy( f) = 1 at all frequencies. At the opposite extreme, if X and Y are inde-
pendent processes, Cyy(f) = 0 and niy( f) = 0 at all frequencies. Between these
two extremes there lies a wealth of possible relationships between the processes
that can often be measured usefully by the coherence function. It may be, for ex-
ample, that X and Yare closely related but only over a limited range of frequencies.
This would be the case if X and Y each represented a noisy “’locked in” response
to a sinusoidal signal of frequency foe In this case the coherency would be nearly
unity at f o and zero elsewhere. Similar situations may exist when the processes
are not driven ones. They may be highly coherent over certain ranges of frequency
and incoherent elsewhere. Note should be taken here of the fact that the coher-
ence function suppresses any phase information concerning the two processes— t
considers their relationship only in terms of power at a given frequency. Later in
the chapter we discuss the use of phase measures to detect process interrelation-
ships. It is also worth noting that when one of the processes is a well-defined
stimulus, coherency measures are inferior to average response or cross-correlation
techniques. Coherency measures find their major application when the processes
are substantially random ones.

The coherence function exemplifies a change in emphasis from temporal to
frequency measures. It can bring a certain amount of clarification to interprocess
relationships. In this regard the estimator of the coherence function has properties
that seem to be superior to those of the ccvf estimator. It is these properties which

(3.123)
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we consider now. The estimator nfcy( f) for the coherence function needs to be
defined carefully. A meaningful estimate cannot be obtained directly from the raw
auto- and cross-spectra of the processes. To see this, it is only necessary to examine
what would happen if this were the case, viz.,

2 * 2

| Pow (fu)l | Pyy (F)| 1 X () P[Y (fn) 2

(3.115)

Clearly, this is a useless quantity. To be useful, a coherence function estimator
must be formed from smoothed spectral estimates of the processes. The smoothing
operations, however, necessitate consideration of the same issues that were dealt
with in the estimation of auto- and cross-spectra, resolution, a d bias. Their effect
on the coherence function estimator is more difficult to determine, simply because
of the way the coherence function has been defined. Though formal solutions for
the bias and covariance of coherence function estimates have not been obtained for
all the situations of interest involving (a) different kinds of processes, (b) different
spectra, and (c) different smoothed spectral estimators, it has been possible by
the use of simulation techniques to develop useful relationships for the bias and
variance in many situations of interest. A property of major interest is that the
coherence function estimator obtained from smoothed spectral estimates appears
to be a robust one. That is, it is insensitive to whether the processes are Gaussian
or not. This means that one can employ coherence function estimation without
having to be particularly concerned about whether the results of the analysis are
sensitive to the amplitude distributions of the particular processes involved.

As a rule, it is the small values of coherence that are especially important to
deal with. They are the ones that are normally encountered in dealing with the
EEG, for example. Electrode sites that are not close usually produce data in which
clear correlations are not obvious. And if they were, there would be little reason
to perform a coherence function analysis. To see how large the coherence function
might be in a not too unreal situation, let us consider a simple model in which the
data sources X and Y consist of a common signal process S embedded in inde-
pendent noise processes [N; and Na. The temporal representation of this situation
is

z(t) = ni(t) + s(t)y(t) = na(t) + s(t) (3.125)
(3.116)
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The power spectrum representation of this situation is

Caa(f) = Cruni () + Cs5(f)Cyy(f) = Crpny () + Cs5(f)Cay(f) = Css(f)

(3.126)
(3.117) The last relationship follows from the Fourier transform of the ccvf be-
tween X and Y. We must have C,,(7) = Cs4(7) because the only correlation be-
tween X and Y is that caused by the presence of S in both. The coherence function
is then

CL(f)
[Criiny () + Css(N][Crana () + Css ()]

(3.118) If we assume n; and ny to have identical spectra, this can be simplified to
1
() = 3
(L4 Cnn(f)/Css(f)]

(3.127)

Kz (f) =

K

(3.128)

(3.119)

Let us now consider the signal process to have strength equal to the noise pro-
cesses at frequency f. Then Hiy( f) = 1/4, arather small coherence. A signal-to-
noise ratio of the order of unity tends to be large in comparison to that encountered
in a number of interesting neurological situations, and so our major concern insofar
as coherence function estimation is concerned must be with the behavior of miy( f)
when coherency is low.

The behavior of the coherence function estimator is best known when it is de-
rived from smoothed spectral estimates having 20 or more degrees of freedom.
This means, for example,” smoothing over 10 neighboring frequencies with a rect-
angular spectral window or using 10 data sequences when Bartlett smoothing is
employed. Under these circumstances it has been found (Enochson and Goodman,
1965) that when the squared coherence is between 0.3 and 0.98, its estimator 2,
expressed in terms of the Fisher z variable, has nearly Gaussian distribution. 2 is
given by

. 1. 1 1+R
% = tanh ™! Rpy = 3 log T /%:Z (3.129)
(3.120) The mean and variance of Z are given by
pz = tanh™" Kgy + = (3.130)

df —2%% 7 df —2

(3.121)

d.f. is the degrees of freedom associated with the spectral smoothing window
and has been discussed previously. A rectangular window covering 10 neighbor-
ing frequencies has 20 degrees of freedom. The second term in the mean is a bias
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which becomes small as the degree of smoothing increases. The variance of the
estimate also becomes small as the width of the spectral window increases, but ob-
viously one does not wish to widen the window too much and thereby lose spectral
resolution. One may surmise, however, that the covariance of coherence function
estimates at nearby frequencies increases with the degree of smoothing. When the
squared coherence is less than 0.3, one can continue to deal with the z transformed
version Ky, but the bias and the variance of the estimator need to be modified.
Benignus (1969) has shown by using simulation techniques that a better estimate
for Kxy, small or large, is

. 2
R2, =R%— ﬁ(l — K2y) (3.131)
(3.122) The same techniques also show that a better estimate of the variance of 2
is given by
= 02[1 — 0.004(164%,+0-22)] (3.132)

z

(3.123)

Further refinements to the estimator have been made Silva et ale (1974). Con-
fidence limits for /ﬁ%y may be constructed using these results. They are shown in
Fig. (3.11). N is the number of segments used in Bartlett smoothing, and therefore
is twice the number of degrees of freedom of the spectral estimate.

The discontinuities in the upper bounds result from the method of computation
and are of no special significance. The curves are instructive. Suppose we per-
form Bartlett smoothing with 16 segments of data. Only when miy > (.23 can we
then say with about 95% confidence that the two processes have some coherence at
the frequency tested. The expected value of the squared coherence is 0.23 but the
confidence limits are 0 and 0.46. The figure clearly shows that rather large estima-
tion errors will be the rule rather than the exception when the squared coherence is
low. In view of these considerations, it is not surprising that nearly all who discuss
the use of the coherence function recommend extreme caution in its use. Even
large coherence function estimates may not justify the interpretation that there is
dependency between the processes.

Several interesting applications of the coherence function to the study of the
EEG have been made. We mention only two. Lopes da Silva et al. (1973) used
the coherence function to study the relationship between cortical alpha rhythms
and thalamic generators. They found instances of significant coherence between
the two regions as well as cortico-cortical coherences which were high over large
regions of the cortex. Another interesting application of the coherence function
has been given by Gersch and Goddard (1970). They used it to test for the location
of an epileptic focus in terms of its nearness to one of a number of electrode sites
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K2

Figure 3.11: Fig. 3.11. The 95% confidence intervals of the coherence function,
plotted for the number of data segments used in smoothing. The discontinuities in
the upper bounds reflect the change to a one-tailed interval when the lower con-
fidence limit descends to O. [Benignus, V. A., IEEE Trans. Audio Electroacoust.
AU-17, 145 (1969).J

within the brain. This involved dealing with the coherence function for pairs of
data sources (electrode sites) before and after possible coherence with a third site
had been taken into account. By showing that the activity of two sites was coherent
in the important frequency range of 4-12 Hz when the effects of a third site were
present and then became incoherent when the effects of that site were computa-
tionally removed, they were able to infer that the third site was near the epileptic
focus.

3.20 Phase Estimation

Another method for determining the existence of correlation between two pro-
cesses is to use the information in the phase of the two processes rather than their
power. The phase spectrum is derived from the cross spectrum by the relationship

Fuy(f) = arctan]~Quy(f)/ Loy (£)] (3.133)

(3.124)

The denominator is the real part of C,,(f) and the numerator the imaginary
part. If the processes X and Y are uncorrelated, then no particular phase relation-
ship is to be expected at any frequency. Fj,(f) will be a random variable with
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mean 0 uniformly distributed over the range —m/2 to 7/2. On the other hand, if
there is a correlation between the two processes, this will show up in the phase
spectrum in the form of a preferred phase angle related to frequency. For example,
when X and Y both contain a signal process S as in Eq. (3.116), the phase spectrum
will be O for all f. If X contains S, and Y contains a linearly filtered version of S,
ny( f) can take on any real value. The estimator Fa;y( f) of the phase spectrum is
a random variable defined by

~

Fay(f) = arCtaﬂ[—me(f)/ﬁwy(f)] (3.134)

(3.125) where L, (f) and Qy( f) are, respectively, the real and imaginary parts of
X(f)Y = (f). The phase estimator, like the squared coherence estimator, is useful
only when it is preceded by smoothing of the cross spectrum. Under these circum-
stances the variance of the estimate decreases with increasing squared coherence
and the number of degrees of freedom of the smoothed spectral estimate.

The relationship is

varlFo (D] = 77 (5

—1) (3.135)

(3.126)

Decreasing the variance of the phase estimator obtained from a fixed length
sample by increasing the degrees of freedom brings about, as before, a decrease in
the spectral resolution and a lessened ability to detect correlations that may exist
only over narrow frequency bands. Discussion of further properties of the phase
estimator may be found in Jenkins and Watts (1968). Thus far it has not been
widely applied to the study of EEG activity.
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3.21. REPRESENTATIONS

Representations
Time Domain

Frequency Domain, Fourier Transform pairs, what
it means

Various types of signals and their F-transforms
Continuous vs discrete

Operational calculus - implied in FT
Convolution vs multiplication

What the frequency domain can tell us

How it is useful for doing things
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